
SECURITY VERIFICATION OF SECURE
MANET ROUTING PROTOCOLS

THESIS

Matthew F. Steele, Captain, USAF

AFIT/GCS/ENG/12-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States



AFIT/GCS/ENG/12-03

SECURITY VERIFICATION OF SECURE
MANET ROUTING PROTOCOLS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Insitute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Matthew F. Steele, B.S.E.E.

Captain, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT/GCS/ENG/12-03 

SECURITY VERIFICATION OF SECURE 
MANET ROUTING PROTOCOLS 

Matthew F. Steele, B.S.E.E. 
Captain, USAF 

Approved: 

L1 FEB 12.. 

Maj Todd R. Andel, PhD (Chairman) Date 

~~ Rb 12 
Date 

Date 



Abstract

Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly

against their security properties. Previous research focuses on verifying secure, reactive,

accumulation-based routing protocols. An improved methodology and framework for

secure MANET routing protocol verification is proposed which includes table-based and

proactive protocols.

The model checker, SPIN, is selected as the core of the secure MANET verification

framework. Security is defined by both accuracy and availability: a protocol forms

accurate routes and these routes are always accurate. The framework enables exhaustive

verification of protocols and results in a counter-example if the protocol is deemed

insecure.

The framework is applied to models of the Optimized Link-State Routing (OLSR)

and Secure OLSR protocol against five attack vectors. These vectors are based on known

attacks against each protocol. Vulnerabilities consistent with published findings are

automatically revealed. No unknown attacks were found; however, future attack vectors

may lead to new attacks.

The new framework for verifying secure MANET protocols extends verification

capabilities to table-based and proactive protocols. More work is needed to create attack

vectors that reveal unknown attacks against secure protocols, but the framework makes

construction of such vectors easy.

iv



I dedicate this thesis to my loving family. Their support has provided me with the
encouragement and environment needed to be successful throughout my time at AFIT.

v



Acknowledgments

I am indebted to my fellow citizens and the United States Air Force who have made it

possible for me to attend the Air Force Institute of Technology.

This thesis was only possible through the advice and mentorship of my advisor Todd

Andel.

Matthew F. Steele

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 MANETs and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 The Formal Verification Framework . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Mobile Ad Hoc Networking . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3.1 Reactive, Accumulation-based . . . . . . . . . . . . . . 12
2.1.3.2 Reactive, Table-based . . . . . . . . . . . . . . . . . . . 13
2.1.3.3 Proactive, Table-based . . . . . . . . . . . . . . . . . . . 13

2.2 MANET Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Secure, Reactive, Accumulation-based Protocols . . . . . . . . . . 23
2.2.2 Secure, Reactive, Table-based Protocols . . . . . . . . . . . . . . . 23
2.2.3 Secure, Proactive, Table-based Protocols . . . . . . . . . . . . . . 24

2.3 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Verification Methods . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Applying Formal Verification to MANETs . . . . . . . . . . . . . 28
2.3.3 Promela for MANET Verification . . . . . . . . . . . . . . . . . . 31

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



3.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Security Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Selecting the Verification Tool . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Attack Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 OLSR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Security Verification . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Secure OLSR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.3 Security Verification . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1 OLSR Validation and Verification . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Secure OLSR Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Secure OLSR Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 The Subtlety of Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix A: Message Sequence Charts . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix B: Other Secure Routing Protocols . . . . . . . . . . . . . . . . . . . . . 86

Appendix C: Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



List of Figures

Figure Page

1.1 A routing loop: S sends data destined to D; A forwards data to B; B forwards

data to A; cycle repeats indefinitely and data never reaches D. . . . . . . . . . . 3

2.1 Simple three node topology, T=5. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Message sequence chart of an OLSR execution under topology, T=5. . . . . . . 20

3.1 The malicious node, vA, forms the only link between vi and the nodes v j and vk. 45

3.2 Framework for model verification. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Node v1’s communication is controlled by the wireless medium. . . . . . . . . 52

3.4 Collection of topologies involving an invisible node, I. FAIL implies I adds at

least one false route. PASS implies I has no effect. . . . . . . . . . . . . . . . . 56

3.5 State machine for OLSR. State numbers are assigned automatically by SPIN. . 61

4.1 Generic networks where i , j , k and B is malicious. . . . . . . . . . . . . . . 70

4.2 Collection of topologies involving an invisible node, I. FAIL implies I adds at

least one false route. PASS implies I has no effect. . . . . . . . . . . . . . . . . 76

4.3 Topology #30, under attack vector iii, in two separate simulation results. . . . . 78

ix



List of Tables

Table Page

2.1 Selected mobile ad hoc network (MANET) routing protocols. . . . . . . . . . . 12

2.2 OLSR Fields Maintained by Each Node . . . . . . . . . . . . . . . . . . . . . 15

2.3 OLSR HelloMessage Format . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 OLSR Topology Control (TC) Message Format . . . . . . . . . . . . . . . . . 16

2.5 The Open Systems Interconnection model (OSI model) and security. . . . . . . 22

2.6 Pertinent Secure MANET routing protocols. . . . . . . . . . . . . . . . . . . . 23

2.7 C switch statement [1] compared to a Promela if statement. . . . . . . . . . . . 34

3.1 Bit String Format, N=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Trust Relationships (T) in Secure OLSR. B = {all node identities} . . . . . . . 55

3.3 Attacks Against Secure OLSR. Attack Vector: (Na,T ,D): Na is number of

attackers, T is a trust relationship,D is the definition of the attacker’s capabilities. 57

4.1 Verification against attack iii: Omnipotent . . . . . . . . . . . . . . . . . . . . 72

4.2 Verification against attack vector v: Outsider . . . . . . . . . . . . . . . . . . . 73

4.3 Verification against attack i: Benign . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Verification against attack ii: Byzantine . . . . . . . . . . . . . . . . . . . . . 75

4.5 Verification against attack iv: Invisible node . . . . . . . . . . . . . . . . . . . 76

B.1 link-state update (LSU) fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



SECURITY VERIFICATION OF SECURE

MANET ROUTING PROTOCOLS

1 Introduction

It may never be possible to prove that specific properties of routing protocols are true,

but formal verification methods can demonstrate when properties are false. Routing

protocols can be designed and suited for almost any environment from planning logistics

routes to routing packetized information over several wireless radio links. Mobile ad hoc

networks (MANETs) are a specific example of wireless routing protocols. Recently, many

secure protocols have been proposed with the intended property of route security. A

formal verification framework for security properties of MANET routing protocols can

provide a method to form concise protocol, property, and environmental definitions; to

study a protocol within a distributed system domain; to execute the protocol in an

execution environment that is conceptually near a physical implementation; and to

improve discourse over protocol properties.

1.1 MANETs and Security

The point-to-multipoint architecture, commonly referred to as access point or base

station mode, for wireless technology is well established; however, such architecture is

infeasible in military, disaster response, and remote sensor applications. This infeasibility

is apparent because point-to-multipoint architectures are dependent on infrastructure that

is not available in these applications. Forward deployed military units must provide their

own methods for communication. In disaster response scenarios communication systems

are often destroyed or overloaded, requiring rescue teams to provide their own

1



communication infrastructure. In remote sensor applications wireless sensors are deployed

in inhospitable environments with limited battery power and random sensor placement.

An alternative to the point-to-multipoint architecture is ad hoc architecture, referred

to as a MANET. MANET protocols are designed to network many wireless nodes

independently of any centralized hardware. Every node is responsible for successfully

routing information between other nodes. Effectively, all nodes are routers. These

protocols adapt to changes in radio link status, making them ideal for wireless

communication, especially in scenarios where nodes are constantly moving and no

centralized hardware can coordinate communication. The flexibility of MANET protocols

also makes them vulnerable to attacks.

Routes consist of a series of links, also known as hops, between neighboring nodes.

The goal of a MANET is to provide accurate routes between all nodes. An adversary can

affect route availability by overt jamming, preventing route formation, or injecting

inaccurate routes. A route is inaccurate when it contains one or more non-existent links.

An adversary might deploy malicious nodes with the intent of adding inaccurate routes or

blocking accurate ones.

1.2 Formal Verification

Formal verification is the task of proving that an that algorithm operates correctly

with respect to a formal property. This task takes an algorithm and one or more properties

as inputs and returns the answer of either correct or incorrect. Finding this answer is not

trivial. Several techniques and tools have been developed to assist in achieving formal

verification.

An example of formal verification can be demonstrated with loop-freedom, a property

that is common in routing protocols. A loop occurs when two nodes indefinitely forward a

packet between each other. As a result, the packet never actually reaches its intended

destination. Loops can occur when a node, A, believes it can reach the destination through

2



another node, B, and B believes it can reach the same destination through A, Figure 1.1

depicts this situation. Formal verification can be performed on a routing protocol against

the property of loop-freedom. If the protocol is always free of loops, then an ideal formal

verification will output correct and an associated proof of correctness; otherwise the

output is incorrect with a counter-example describing a scenario causing the loop. In most

cases it is easier to prove that an algorithm is incorrect by providing a counter-example.

Routing Loop: A-B

AS B D

Figure 1.1: A routing loop: S sends data destined to D; A forwards data to B; B forwards

data to A; cycle repeats indefinitely and data never reaches D.

1.3 Research Problem

A framework is needed for the formal verification of secure MANET routing

protocols with respect to their stated security goals. The framework will provide concise

protocol, property, and environmental definitions. These definitions will lead to an

improved, fact-based discourse of secure routing protocols. An execution environment for

the framework will allow the protocols to be examined in the context of a distributed

system domain, without the need for physical implementation.

Accuracy and availability are the two goals associated with secure routing. When

these goals are achieved, the protocol is said to have the properties of accuracy and

availability. A routing protocol is secure if it creates routes that are accurate and those

routes are always accurate. When faced with node failures and active attacks, a secure

protocol must continue to meet its goals.

3



1.4 The Formal Verification Framework

Secure MANET routing protocols are complex. This complexity compounds with

mobility and security causing all of a verification’s possible states, known as state-space,

to increase exponentially. State-space explosion has made proofs for secure MANET

protocols difficult. However, formal methods have shown some promise in revealing

counter-examples for protocols and their security goals. Specifically, the Simple Promela

Interpreter (SPIN) has been applied to several secure, reactive routing protocols and has

automatically discovered scenarios in which security goals fail.

Andel [2] developed a framework around SPIN for exhaustively verifying a subset of

secure, accumulation-based, reactive MANET routing protocols against the property of

security. The framework is described fully in Chapter 2. Andel’s framework is unable to

analyze table-based and proactive protocols. This research adapts formal verification and

Andel’s approach to perform the property verification of table-based and proactive routing

protocols. The improved framework is demonstrated for two proactive, table-based

routing protocols, but is extensible to all table-based routing protocols.

1.5 Outline

Chapter 2 is a survey of previous works in secure MANET routing verification and

presents important background information about SPIN and secure routing protocols.

Chapter 3 is the approach taken for the verification and validation of secure, table-based

MANET routing protocols. Five example attack vectors are introduced. Chapter 4

provides the validation and verification results for the Optimized Link-State

Routing (OLSR) and Secure OLSR protocols against the attack vectors. The conclusions

and future work are discussed in Chapter 5.

4



2 Background and Literature Review

This chapter provides background on the field of wireless routing protocols. It

presents the special challenges associated with wireless routing and discusses the

verification efforts applied to routing protocols. Representative reactive and proactive

protocols are introduced in both insecure and secure implementations. An emphasis is

placed on Optimized Link-State Routing (OLSR) and Secure OLSR. The Simple Promela

Interpreter (SPIN) verification tool is also introduced, and specific features are related to

their applications in mobile ad hoc network (MANET) protocol verification.

2.1 Mobile Ad Hoc Networking

Routing for physically connected devices has two commonly accepted solutions, the

link-state and distance-vector routing strategies. For both, a relatively static network, in

which the end-systems and routers change infrequently, is assumed. MANETs challenge

this assumption because mobile devices are not immobile.

The first wireless network, ALOHANET [3], was developed at Hawaii University.

This network laid the foundation for digital wireless technologies. ALOHANET was

implemented as a point-to-point architecture with a star topology. One wireless router was

used to forward data between two hosts. The problem of mobility was not addressed in

ALOHANET because all devices participating in the network were static.

In 1977, Ludwig and Roy [4] proposed saturation routing to solve the mobility

problem. The saturation routing strategy is commonly known as flooding. In saturation

routing a connection request is sent by an initiator to its nearest switch. This switch then

forwards the request on to all other switches in the network. If the destination exists on a

particular switch, that switch identifies itself to the initiator. The switches are responsible

for discovering the destination and establishing a virtual circuit connection to it. This

5



solution required routing to be accomplished by specialized hardware with the sole

purpose of routing information.

In 1981, Gafni [5] proposed a method for routing data between packet radios. The

approach required each device to perform switching functions in addition to its primary

radio function. This paradigm diverges from the established infrastructure based approach

of ALOHANET and other communication networks of their time. Gafni’s approach is

considered the first ad hoc routing protocol [6].

The primary function of wireless devices in an ad hoc network varies depending on

its goal. In addition, all these devices must fulfill the critical secondary function of routing

data within their network. Routing protocols are concerned with the secondary function.

Today’s ad hoc routing schemes have not changed much from their origins. Flooding,

distance-vector, or link-state routing strategies can be found at the core of every ad hoc

routing protocol. The ad hoc implementations of these strategies differ from their origins

in that they have been optimized to preserve wireless bandwidth, decrease route delay, or

decrease power consumption in a wireless environment.

Several well accepted protocols exist for performing the routing function in ad hoc

networks. These are Dynamic MANET On-demand Routing (DYMO), Optimized

Link-State Routing (OLSR), and Simplified Multicast Forwarding (SMF). Each protocol

has been selected by the Internet Engineering Task Force (IETF) MANET Working

Group (WG) 1 for standardization.

2.1.1 The Environment. Ad hoc networks operate in a significantly different

environment than traditional networks. Traditional networks depend on access to

infrastructural assets. Such assets may be the routers and cabling in an office building or a

wireless access point that provides wireless devices connectivity to the Internet. In both

examples fixed infrastructure is used to accomplish the goal of connecting end users. An

1 http://datatracker.ietf.org/wg/manet/charter/

6



ad hoc network does not have the same reliance on infrastructure. Ad hoc networks are

unique because they require every node to act as a router and they operate in a wireless

environment with the potential for high-mobility.

The ad hoc environment provides unique challenges that routing protocols must

meet. Wireless networks must account for the broadcast nature of the environment, which

impacts network density and security. Ad hoc routing protocols must also tolerate high

levels of mobility caused by movement, malfunction, failure, or compromise of any set of

nodes within the network.

The biggest problem faced in wireless networking is that of broadcast transmission,

because all communication can be overheard by unintended recipients. In a wireless

network all routing information is broadcast from each participating node. Given this

structure, no single node is poised to function as a bastion from which to protect the whole

network. The exact footprint depends on the antenna and power of the transmission. It is

generally assumed that the transmission power is equivalent for all nodes and that the

antennas are omni-directional with comparable gains. Directional antennas have been

proposed; however, their implementation is difficult in ad hoc networks because of

mobility.

Although the ALOHANET’s star topology was simple, it encountered two primary

problems: wireless digital transmissions had a high error rate, and simultaneous

transmissions on the same channel were lost. This same problem still affects all wireless

networks today. Collisions lead to a limitation in the number of users on the wireless

medium. Gupta and Kumar [7] demonstrate that the capacity, in bits per second, is upper

and lower bounded by Θ
(
1/

√
nlog(n)

)
, where n represents the number of nodes

participating in a wireless network. The capacity of a wireless network approaches zero as

the number of users approach infinity. This limitation is a direct result of broadcast

transmissions colliding. Carrier detection would prevent packet collisions; however, the

7



wireless environment makes this infeasible and collision avoidance is used instead.

Collision avoidance is implemented at the data link layer and is generally not the concern

of the routing protocol.

Signal jamming is another problem exposed by wireless networks. Unintentional

jamming can be the result of adjacent wireless systems or too many participating nodes.

Intentional jamming is easily performed by an adversary broadcasting continuously at a

high power level. Jamming, in either form, disrupts communication to some or all nodes

in a network and can be considered denial of service.

Node mobility manifests in network topologies that are constantly changing. For

infrastructure based networks an ongoing session must not be interrupted even if the user

moves out of range of one access point into the range of another in the same network.

Handling topological change is only the responsibility of the access points. For ad hoc

networks mobility means an ongoing session is not interrupted. If an existing path fails a

new path needs to be established to maintain the session. This maintenance may involve

reconfiguring multiple hops until a new route is established, and must appear seamless to

the users. Mobility is a significant challenge which all MANET routing protocols must

address in their implementations.

Discovering routes in a MANET is another challenge. Mobility causes formed routes

to break; therefore, addressing mobility is related to route discovery. Depending on the

intent of the protocol, some compromises may need to be made in route latency, message

overhead, or other properties. These choices can be manipulated to achieve certain design

goals, such as quality of service, energy efficiency, and route freshness.

Wireless networks are exposed to many security vulnerabilities. Adversaries have the

potential to listen, modify, relay, and inject communication. In an unprotected network, an

adversary can subvert the routing process by injecting traffic that does not follow a

protocol’s specification. While, a protected network is more difficult to attack, a

8



combination of modified and relayed traffic may make it is possible for an outsider to

subvert the routing process. In either case, it is important to realize that an adversary may

take advantage of certain technologies, such as directional antennas, to improve their

ability to listen to and inject traffic. Secure protocols may have subtle, unknown flaws.

The benefits of untethered digital devices far outweigh all the problems associated

with the wireless medium and routing. As wireless communication is accepted more and

more, it becomes imperative that all of the associated vulnerabilities are understood for

operational purposes. Mitigation is possible, but the first step is understanding the risks.

2.1.2 Applications. Ad hoc networks take on different names and meanings based

on the specific application. In this research, a MANET is a self configuring, packet

switched network, composed of wireless nodes where each node functions as both an

end-device and router. Nodes in a MANET are commonly sensors, network bridges,

communication devices, databases, or combinations of each.

The term wireless mesh network (WMN) is used to describe a network composed of

both MANET nodes and fixed infrastructure, e.g., access points, cell towers, etc. Wireless

sensor networks (WSNs) are usually deployed in inhospitable environments and in

imprecise configurations with limited power per device. Therefore, it is essential that a

sensor network be self-configuring and self-healing. WSNs are the subset of MANET

routing protocols devoted to energy aware routing. Sensor networks tend to make

assumptions about node density, battery life, and processing power. Vehicular ad hoc

networks (VANETs) are specializations of the more general MANET. These networks

place assumptions on aspects of node mobility, e.g., speed, and direction of travel. The

only assumption placed on the MANET is that all nodes are able to exhibit mobility and

must perform the required routing function. MANETs are the focal point of this research

because they encompass the goals of WMNs, WSNs, and VANETs.

9



Some recent literature has focused on specialized versions of MANETs. For example,

Stajano [8] and Karlof [9] both discuss security of ad hoc networks, but only address the

class of WSN routing protocols. While this focus is important to the specific sensor

application of ad hoc networking, it loses sight of the larger class of ad hoc protocols.

2.1.3 Protocols. The underlying technology of MANETs is the routing protocol.

Protocols ensure that devices in the network can communicate with one another. There are

many ways to classify MANET routing protocols, the three most important of which are

single-phased or two-phased, accumulation-based or table-based, and proactive, reactive,

or hybrid. These classifications characterize the basic operation of any MANET routing

protocol. Each attribute carries with it distinctive benefits and drawbacks. For example, a

proactive routing protocol exhibits low route latency, but requires more control traffic for

establishing routes that may never be used.

The concept of single-phased and two-phased protocols is used by Andel [10].

Single-phased protocols are characterized by data forwarding without the use of

pre-established routes. The flooding strategy is classified as a single-phased protocol, as

well as any protocols that merely provide optimizations on top of flooding. Two-phased

protocols are divided into route discovery and data forwarding phases. Route discovery

determines what paths are available in a network. The data forwarding phase sends data

through these paths, and thus is dependent on the route discovery phase. If routes become

inaccurate then a two-phased protocol should re-initiate route discovery.

The accumulation-based or table-based classification refers to the way a protocol

stores routes between nodes. In either case the classification implies a two-phased

protocol because routes are discovered before being accumulated or stored in tables.

Accumulation-based protocols embed routes in a control segment of packetized data. At

each hop the embedded control data is used to accumulate the previous hop. Table-based

10



protocols maintain routing tables in every node. The routing tables at each node are used

to make the next hop decision for packets based on the embedded destination.

The proactive, reactive, or hybrid classification relates how a routing protocol

performs route discovery. Route discovery implies all protocols under this classification

are two-phased. Proactive routing protocols continually build all possible

source-to-destination routes within a network. Every node independently stores a route for

every destination. Route storage also implies proactive protocols are table-based. Reactive

protocols build source-to-destination routes on-demand, caching active routes. Some

reactive routing protocols utilize route accumulation, storing routes only at the

destination, others are table-based and maintain a forwarding table in every node. In

reactive, table-based protocols, route entries are only added to a node’s table if the node is

in a path between the source and destination. Hybrid protocols combine proactive and

reactive behaviors. The regions of proactive and reactive operation are usually separated

by a metric such as hop-count [11].

By far, the most useful classification is that of proactive or reactive. This

classification is followed in importance by the accumulation-based or table-based

classification. Finally single-phased or two-phased classification helps to differentiate the

previous two classifications from flooding strategies. The two-phased classification

provides a dichotomy between route discovery and data forwarding. The remainder of the

routing discussion is limited to the route discovery phase. Routing security is only

concerned with route discovery. If route discovery provides inaccurate results then the

data forwarding phase is negatively impacted.

Designing a routing protocol is an art of balancing requirements and desirable

features. An illustrative example is the balance between route latency, update period, and

message overhead. Route latency refers to the time between when a route is requested for

transmission and when it becomes available. Update period refers to how often routes are

11



refreshed and reflects on how well the protocol can handle mobility. Reactive protocols

feature high latency because routes are discovered only when needed so a route is

guaranteed but takes more time to form. Proactive protocols feature low latency because

routes are formed continually, but routes are not guaranteed because mobility may

invalidate a route between updates. The trade-off between latency and route availability is

a common example of choices that must be considered in the design of a protocol. In

accumulation-based protocols message overhead is added to the transmitted data.

Table-based protocols use separate control messages for route discovery. Other trade-offs

are also possible for achieving goals, such as, energy conservation, and security.

There are many MANET routing protocols. A few appear in Table 2.1, where each

protocol’s respective classification is briefly captured. Notably, Dynamic MANET

On-demand Routing (DYMO) and Optimized Link-State Routing (OLSR) were both

selected by the IETF MANET WG for standardization.

Table 2.1: Selected MANET routing protocols.

Protocol Classification
Dynamic source routing (DSR) [12] Reactive,

Accumulation
Dynamic MANET On-demand Routing (DYMO) [13] Reactive,

Table-based
Ad hoc On-demand Distance Vector (AODV) [14] Reactive,

Table-based
Lightweight Underlay Network for Ad hoc Routing (LUNAR) [15] Reactive,

Table-based
Optimized Link-State Routing (OLSR) [16] Proactive,

Table-based
Destination Sequence Distance Vector (DSDV) [17] Proactive,

Table-based

2.1.3.1 Reactive, Accumulation-based. Dynamic source routing (DSR) [12]

is a very simple ad hoc routing protocol. The protocol is two-phased and its

12



route-discovery phase can be described as a flooded route request and directed route reply

from the destination node. The routes are accumulated by the request and forwarded in the

reply. Every request received at the destination triggers a reply message. For example, if

node A sends a route request (RREQ) message destined for C, then node B forwards the

RREQ to node C. Since node C is the destination of the request, node C sends a route

reply (RREP) message with the accumulated route, C-B-A. Node A eventually learns of

the A-B-C route to C and uses this route until it expires or breaks.

2.1.3.2 Reactive, Table-based. Ad hoc On-demand Distance Vector (AODV)

[14] and Dynamic MANET On-demand Routing (DYMO) [13] are reactive, table-based

protocols. AODV and DYMO are loosely based on the fundamental RREQ/RREP design

of DSR with the exception that the intermediary nodes maintain the routes rather than

forwarding each route through the network. Both protocols are table-based. As a RREQ is

forwarded through the network a reverse path, to the sending node, is recorded at each

intermediary node. When the RREQ reaches the destination, a RREP message is

forwarded along the reverse path. As the RREP is propagating through the network each

node records the sender of the reply, thus setting up a reverse path to the destination. The

route discovery phase is complete upon receipt of the RREP at the requesting node. The

DYMO protocol is a simpler version of AODV which removes unnecessary route

discovery procedures. Both protocols fundamentally operate in the same way.

2.1.3.3 Proactive, Table-based. Optimized Link-State Routing (OLSR) [16]

relies on the link-state routing strategy in which every node learns the neighbors of every

other node in the network. OLSR uses multi-point relays (MPRs) to improve performance

by decreasing the number of broadcasting nodes. MPRs are responsible for forwarding

data on behalf of other nodes. Only MPRs can forward packets, which limits the number

of nodes broadcasting and minimizes the amount of flooding in the network. OLSR is

13



proactive so it is continually performing the route discovery phase of the two-phased

process.

The OLSR protocol is of particular interest in this research because it is both

proactive and table-based. In the context of security and verification only reactive,

accumulation-based protocols have been thoroughly studied, a few researchers have

examined reactive, table-based protocols, e.g., Wibling [15] examines LUNAR, but there

is no similar literature for proactive, table-based routing protocols. OLSR is used as a case

study for this research, and for this reason the details of the protocol are thoroughly

examined in the remaining part of this section.

At the core of the Optimized Link-State Routing (OLSR) protocol’s function is the

definition of neighbors, two-hop neighbors, and multi-point relay (MPR) sets. A neighbor

is defined as a node within transceiver range of another node. Two-hop neighbors are the

neighbors of a neighbor. A multi-point relay (MPR) set is a set of neighbors requesting the

current node to relay data to its neighbors. The MPR set provides a path from a node to its

two-hop neighbors. A goal in OLSR is to distribute MPR sets to all nodes in the network.

If every node has accurate and complete MPR and neighbor sets then optimal route

selection is possible between every node. OLSR’s operation can be divided into two

general processes: neighbor sensing and topology control, both run concurrently. A third

process, MPR Selection, is the process of selecting relaying nodes and is part of the

neighbor sensing process. Each node maintains internal state variables for these three

processes as shown in Table 2.2.

During neighbor sensing HELLO messages are generated by all participating nodes.

HELLO messages traverse only one wireless link, i.e., a single hop. Table 2.3 contains the

information that every node uses in a HELLO message. A node which has not discovered

any neighbors will periodically transmit an empty HELLO message. When a HELLO

message is received the information it contains is added to the receiving node’s Neighbor

14



Table 2.2: OLSR Fields Maintained by Each Node

Field Purpose
Neighbor Sensing Data from HELLO messages

Neighbor Set One-hop neighbors
Two-hop Neighbors Two-hop neighbors
MPR Set Nodes to relay for

MPR Selection Set Nodes selected as MPRs
MPR Selectees Nodes selected as relays
ANSN Freshness of MPR Set

Topology Control Topology related data
Origin Reachable destination
MPR Selectors Nodes selecting origin as relay
ANSN freshest MPR data

Set, shown in Table 2.2. If this information changes a node’s Neighbor Set, then a new

HELLO message is transmitted by the receiving node. Eventually, through HELLO

messaging, every node learns of its neighbors and two-hop neighbors. Each node selects

which of its neighbors should forward data on its behalf, which is the MPR selection

process. Subsequent HELLO messages inform a node if it has been selected using the

MPR Selection Set field of the HELLO message.

Table 2.3: OLSR HelloMessage Format

Field Purpose
Origin HELLO originator
Neighbors One-hop neighbors
MPR Selection Set Neighbors selected as MPRs
Shorthand: <{n},{mpr},Source>

The shorthand in Table 2.3, < {n}, {mpr},Source>, provides the format of the message

used in the abstracted model. Relative to the Source, {n} is the set of neighbors and {MPR}

is the set of selected MPRs. This notation is used in Figure 2.2.

During topology control, a node selected as an MPR broadcasts a topology

control (TC) message with the structure described in Table 2.4. The MPR field contains

the identifiers of all nodes which have selected the Origin (i.e., the node generating the TC

message) as a relay. The advertised neighbor sequence number (ANSN) field is used to

15



determine the freshness of a TC message. Nodes will only use a TC message if the ANSN

is greater than that of any previously received ANSN for the same Origin. If the time to

live (TTL) is greater than zero, then any node with a non-empty MPR Selector Set must

forward a received TC message after decrementing its TTL. Using this forwarding rule

TC messages spread through the whole network if the initial TTL is large enough (i.e.,

greater than the number of nodes in the network). Finally, the source field denotes the

node from which the TC message was last received. As a matter of style, topology control

always refers to the process and TC always refers to the message.

Table 2.4: OLSR Topology Control (TC) Message Format

Field Purpose
Source Last node to forward TC
Origin TC message originator
MPRs of Source Selected MPRs of origin
ANSN Maintain freshest MPR
Time To Live (TTL) Limits TC life-time
Shorthand: < {s}, ansn, ttl,Source,Origin>

The notation < {s}, ansn, ttl,Source,Origin> below Table 2.4 is shorthand for the

data exchanged in the abstracted TC messages. The {s} field is the set of nodes which have

selected Origin as a mutlipoint relay. This shorthand appears in Figure 2.2.

MPR selection is triggered whenever a node receives new information from a

HELLO message. The goal of the selection process is for the selector to maintain a

minimal set of neighbors which guarantees all two-hop neighbors are reachable. If the

selection results in a change to the node’s MPR Selectees, then subsequent HELLO

messages are sent with the changes. Upon a node receiving a HELLO message, if the

message’s MPR Selection Set contains the current node’s identifier, then the node adds the

message’s Origin to its Topology Control Origin field. This last step alerts a node that it

has been selected as an MPR.

16



Minimal MPR selection is important in respecting the two most important wireless

resources: the transmission medium and battery power. If every neighbor is always

selected as an MPR, then repeated collisions occur on the transmission medium and every

node wastes energy in transmitting redundant messages. This complete selection is no

better than simple flooding, but minimal MPR selection is NP-complete [18]. There is no

known polynomial time algorithm for computing a minimal MPR set. Polynomial time

algorithms can only provide estimates of the minimal set, known as heuristics.

For the purposes of this research, the default MPR selection heuristic of OLSR is

employed. Several other heuristics are available, but this particular one is prescribed in

RFC 3626. Listing 2.1 presents the heuristic. Any MPR selection strategy could be

employed but the research goal is to analyze security properties rather than protocol

efficiency.

A shortest path algorithm computes the routing table using the information obtained

through topology control. Topology control need not be complete to run the algorithm, but

until it is complete the shortest path is not necessarily available. Assuming a static

topology, the routing table eventually becomes complete for every node in the network.

The routing table is maintained as a standard link-state routing table.

An example of the OLSR protocol in operation is captured in Figure 2.2. The

scenario refers to the physical topology in Figure 2.1 where node v0 is in range of v1 and

v1 is in range of v2. The nodes in OLSR operate asynchronously, therefore the exact

ordering of events shown is only one possible ordering. For more details on OLSR’s

behavior refer to RFC 3626 [16].

v1v0 v2

Figure 2.1: Simple three node topology, T=5.

17



Listing 2.1: MPR Selection Algorithm [16].
1 s e t N2 [ n ] , n e i g h b o r ;
2
3 s e t MPR Selec t ion ( s e t ans , i n t s r c )
4 s e l e c t e e = ∅ ; / ∗ ( i ) Remove a l l e n t r i e s from s e l e c t e e ∗ /

5 ans = ans \ i d ; / ∗ ( i i ) Exc lude y o u r s e l f from MPR ( s e l e c t e e ) ∗ /

6
7 N2 [ r s r c ] = N2 [ s r c ] | ans ; / ∗ M a i n ta i n N2[ s r c ] ∗ /

8 s e t myN2 = ∅ ;
9

10 / ∗ ( i i i ) Exc lude a l l N from MPR −− n e i g h b o r may change on e x e c u t i o n ∗ /

11 f o r e a c h ( i ∈ N )
12 N2 [ i ] = N2 [ i ] \ n e i g h b o r ; / ∗ E l i m i n a t e unneeded 2−hops ∗ /

13
14 f o r e a c h ( i ∈ N ) / ∗ ( 3 ) add a l l i i n N w i t h a u n iq ue l i n k ∗ /

15 i f ( | ( N2 [ i ] \
⋃

j,i ( N2 [ j ] ) ) | > 0)
16 s e l e c t e e = s e l e c t e e ∪ i ;
17
18 f o r e a c h ( i ∈ N )
19 i f ( i ∈ selectee )
20 myN2 = myN2 ∪ N2 [ i ] ;
21
22 w h i l e ( | (

⋃N
i N2 [ i ] ) \ myN2 | > 0) / ∗ ( 4 ) Cover a l l N2 ∗ /

23 i n t maxI = 0 ; / ∗ ( 4 . 2 ) MPR S e l e c t i o n H e u r i s t i c ∗ /

24 i n t maxV = |N2 [ 0 ] | ;
25 f o r l o o p ( j = 1 ; j >= n−1; j ++)
26 i f ( |N2 [ j ] | > maxV)
27 maxI = j ;
28 maxV = |N2 [ j ] | ;
29 s e l e c t e e = s e l e c t e e ∪ maxI ;
30 myN2 = myN2 ∪ N2 [ maxI ] ;

To keep the walk-through of Figure 2.2 as concise as possible, several abbreviations

and conventions are adopted. Most notation conforms to standard set notation but there

are some exceptions:

• The subscript i in HELLOi and TCi is strictly for clarity, in OLSR messages are
distinguished only by their contents and transmission order.

• The symbol Rx msg means the current node receives the message msg.

• The symbol Tx msg means the current node transmits message msg.

18



• The symbol→ reads, “it follows that.”

• The symbol vi.s represents the MPR Selector Set of node vi.

• The symbol vi.mpr represents the MPR Set of node vi.

• The symbol vi.n represents the neighbors of node vi.

• The symbol vi.n2 represents the two-hop neighbors of node vi.

• The symbol id represents the address or identifier of the current node.

• The symbol helloi.src represents the origin of the message helloi.

• The symbol vi.tc represents all topology control information known by vi.

• The statement x changed (x unchanged) means elements were added or removed
from set x (set x is unchanged).

• The statement ignore x means that element x is not considered. The statement
usually appears because the element, x, is the address of the current node.

Upon completion of neighbor sensing, topology control builds complete knowledge

of MPRs throughout the network for each node. Topology control runs concurrently with

neighbor sensing, but both processes are separated in Figure 2.2 for clarity. An OLSR

model must consider the concurrent exchange of HELLO and TC messages.

Neighbor sensing requires the exchange of six HELLO messages and topology

control requires only one TC message for the small three-node network depicted in Figure

2.1. When considering all possible concurrent exchanges of TC and HELLO messages the

number of possible states explodes leading to the difficulty of formal verification.

2.2 MANET Security

Traditionally, security entails the need of providing confidentiality, integrity, and

availability (CIA). Providing confidentiality and integrity in the layers above the network

layer has been heavily researched. Many methods for providing secure services are widely

accepted. For example, Public Key Infrastructure (PKI) is a solution that provides

confidentiality, integrity, and non-repudiation on user data. Despite the relevance of

19



——————–HELLO Messaging——————–
Node v0: v0.n = ∅; Tx hello1 :< ∅, ∅, v0 >
Node v1: Rx hello1; hello1.src /∈ n → v0 ∪ n;

hello1.n = ∅ → n2 not changed→ no changes
to v1.mpr or v1.s; v1.n changed → Tx hello2:
< {v0}, ∅, v1 >

Node v0: Rx hello2; hello2.src /∈ v0.n → v1 ∪
v0.n; hello2.n = {v0}, id=v0 → v0.n2 not
changed → no v0.mpr changes; hello2.mpr =
∅ → no changes to v0.s; v0.n changed
→ Tx hello3: < {v1}, ∅, v0 >

Node v2: Rx hello2; hello2.src /∈ v2.n → v1 ∪
v2.n; hello2.n = {v0}, id=v2 6= v0 → v0 ∪
v2.n2; v1∪v2.mpr (reach-ability to v0); hello2.mpr =
∅ → no change to v2.s; v2.n and v2.mpr changed
→ Tx hello4: < {v1}, {v1}, v2 >

Node v1: Rx hello3;hello3.src ∈ v1.n → v1.n is
unchanged; hello3.n = {v1}, id=v1 → v1.n2

not changed→ v1.mpr not changed; hello3.mpr =
∅ → v1.s not changed; v1 enters idle state

Node v1: Rx hello4;hello4.src /∈ v1.n → v2 ∪
v1.n;hello4.n = {v1}, id=v1 → v1.mpr not
changed; hello4.mpr = {v1} → v1 ∪ v1.s; v1.n
changed → Tx hello5: < {v0, v2}, ∅, v1 >

Node v2: Rx hello5;hello5.src ∈ v2.n, v2.n is un-
changed; hello5.n = {v0, v2}, id=v2, ignore
v2; v0 ∪ v2.n2, v2.n2 remains unchanged; v2 en-
ters idle state

Node v0: Rx hello5; hello5.src ∈ v0.n, v0.n is
unchanged; hello5.n = {v0, v2}, id=v0, ignore
v0; v2∪v0.n2; v1∪v0.mpr; hello5.mpr = ∅ →
no change to v0.s; v0.mpr changed →
Tx hello6: < {v1}, {v1}, v0 >

Node v1: Rx hello6; hello6.src ∈ v1.n, v1.n is
unchanged; hello6.n = {v1}, id=v1, v1.mpr
not changed; hello6.mpr = {v1}, v0 ∪ v1.s;
v1.mpr and v1.n are unchanged; v1 enters idle
state

———————Topology Control———————

Node v1: v1.s = {v0, v2} → Tx tc1: < {v0, v2}, v1 >
Node v0: Rx tc1; v0.tc = ∅ → {v0, v2} ∪ v0.tc
Node v2: Rx tc1; v2.tc = ∅ → {v0, v2} ∪ v2.tc

v_0 v_1 v_2

HELLO Messaging

HELLO_1
<[],[],0>;

HELLO_2
<[0],[],1>;

HELLO_3
<[1],[],0>;

HELLO_4
<[1],[1],2>;

HELLO_5
<[0,2],[],1>;

HELLO_6
<[1],[1],0>;

Topology Control

TC_1
<[0,2],2,3,1,1>;

Figure 2.2: Message sequence chart of an OLSR execution under topology, T=5.

20



confidentiality and integrity, nothing can rival the importance of providing availability.

Stajano [8] points out that little else matters if the required system is not available.

Routing information is significantly different than data because it cannot be encrypted and

still remain useful. Routing security can be thought of as the requirement to keep network

paths available for communication. Andel [2] provides a more precise definition of

security:

Accuracy: A routing protocol is accurate if it produces routes that meet its objectives.

Reliability: A routing protocol is reliable if its returned routes are always accurate.

Security: A routing protocol provides security if it preservers the protocol’s accuracy and

reliability in the presence of malicious attackers.

The objective is providing end-to-end communication between two nodes over

existing wireless links. This refined definition of security provides a solid foundation for

security analysis of all routing protocols. Secure protocols use integrity as a tool for

providing security. If the integrity of the route discovery process can be assured then the

protocol must be considered secure.

In examining any network related service it is valuable to relate the services to the

Open Systems Interconnection model (OSI model). Table 2.5 presents which layers are

responsible for securing routing information versus data. This is helpful in limiting the

layers that need to be tested. Each layer builds its capabilities based on the ones below it.

The separation keeps each layer from needlessly complicating the previous layers.

However, the weaknesses of the lower layers propagate into the upper layers. For

example, the physical layer of IEEE 802.11-2007 is easily jammed with interference, and

jamming cannot be overcome anywhere above the physical layer.

Availability is the responsibility of each layer in the OSI model; however, for the

study of MANET routing protocols availability is limited to the physical, data link, and

21



Table 2.5: The Open Systems Interconnection model (OSI model) and security.

Application Layer
Presentation Layer Secure

Session Layer Data
Transport Layer
Network Layer

Data Link Layer Secure Routing
Physical Layer

network layers. At the physical layer it is possible for availability to denied by signal

jamming, interference, or congestion. The data link layer can lose availability if a device

subverts the medium access control process. For example, a node that continuously

contends for medium access without waiting the short inter-frame spacing period subverts

the IEEE 802.11-2007’s medium access control. The only difference from interference

jamming is that the medium access denial of service participates in the medium access

control process. Subverting the network layer can occur if a malicious node inserts itself

and controls a link in an active route. The malicious node then has the ability to

manipulate data at any point. For example, the node could drop data. It is not safe to

assume that any layer is inherently secure. The examples provided for the lower three

layers show that each is susceptible to simple attacks. An unavailable network is of no use.

Table 2.6 lists several secure routing protocols with their respective classifications.

Only protocols designed with the goal of security are included. All of the protocols listed

in Table 2.1 have limitations to their security. The broadcast nature of wireless signals

gives attackers the ability to listen to all network traffic. It is possible for an attacker to

inject information that may cause a protocol to make inaccurate routing decisions. The

protocols listed here have been created to prevent this type of attack, but not all of them

provide unconditional protection. The protocols are assumed to function at the network

layer of the OSI model.

22



Table 2.6: Pertinent Secure MANET routing protocols.

Protocol Classification
endairA [19] Reactive, Accumulation
Ariadne [20] Reactive, Accumulation
Secure Efficient Distance Vector (SEAD) [21] Reactive, Table-based
Authenticated Routing for Ad Hoc Networks (ARAN) [22] Reactive, Table-based
Secure AODV (SAODV) [23] Reactive, Table-based
Secure Link State Routing Protocol (SLSP) [24] Proactive, Table-based
Secure OLSR [25] Proactive, Table-based

2.2.1 Secure, Reactive, Accumulation-based Protocols. Ariadne [20] and endairA

[19] are both secure, reactive, accumulation-based protocols. The routes in both protocols

contain route information that is constantly changing during a RREQ and RREP. These

changes make it difficult to detect if any routing traffic has been modified or falsely

inserted. Both protocols include signed hashes on every modification to prove that only

trusted nodes are participating in route formation. The endairA protocol adds

authentication to RREQ messages as well. Ariadne and endairA have been analyzed for

their security properties by Ács [19], Andel [2], and Benetti [26].

2.2.2 Secure, Reactive, Table-based Protocols. Secure AODV (SAODV) [23]

incorporates digital signatures for authenticating immutable data fields and hash-chains

for securing the hop-count field. In addition, route error messages are digitally signed and

must be verified before being used. See Appendix B.1 for a detailed description.

The Secure Efficient Distance Vector (SEAD) [21] protocol guarantees an upper

bounded sequence number and a lower bounded hop count of each route. The upper

bounded sequence number ensures that an attacker cannot force destination nodes to

perform an arbitrarily large set of hash operations. The lower bounded hop count ensures

that an attacker cannot advertise a route better than the one received. Bounding on

hop-count and sequence number is accomplished through one-way hash chains. Appendix

B.2 describes SEAD in depth.

23



2.2.3 Secure, Proactive, Table-based Protocols. Secure Link State Routing

Protocol (SLSP) secures link-state updates and HELLO messages with public key

cryptography. The link-state updates are similar to the topology control messages used in

OLSR, although SLSP does not include any of the optimizations proposed by OLSR.

Appendix B.3 contains a description of SLSP.

Adjih [25] proposes a strategy for securing OLSR. This strategy, referred to as

Secure OLSR, involves the use of public key cryptography and timestamps. The author

claims the design can be extended to any proactive routing protocols. Secure OLSR is a

natural extension to the OLSR routing protocol, and is used as a case study for secure,

proactive, table-based routing protocols. A detailed description of Secure OLSR follows.

Secure OLSR [25] only differs from OLSR in that two functions are added and a new

message type is proposed. The two functions are verif() and sign(). The function sign()

produces a signature hash of an original message and the originator’s private key. The

verif() function checks that a message corresponds to its signature given the public key of

the originating node. A new message type is defined for sending the signature to each

node. When a control message (TC or HELLO) is received no action is taken until the

corresponding signature is received and this signature authenticates the message. In this

way Secure OLSR can exclude nodes from the network that do not possess the correct

private keys.

Secure OLSR [25] aims to prevent unauthorized nodes from participating in the

network. The protocol assumes that public keys are securely distributed to all participating

nodes. In this research, it is assumed that public keys are known at each node and the

private keys for each node are known only to the respective nodes, unless otherwise noted.

Secure OLSR claims to prevent outsiders from injecting inaccurate routes into the

network.

24



Routing attacks are prevented by using a signature mechanism to provide a secure

and unique hash of each message. The signing mechanism, sign(), is represented by

Equation 2.1. The original message is sent in the clear along with the result of sign().

These messages may be sent in two separate messages. Each node in the network stores

the received messages for a short period until the associated signature is received. If the

received signature can be decoded with the sender’s public key then the message is

processed in accordance with the OLSR protocol. The decoding function, verif(), is

denoted by Equation 2.2. Any node, for which a public key is not held, is prevented from

directly adding traffic to the network. The control messages are always sent in the clear,

making it easier for MPR nodes to update the TTL and ANSN fields of TC messages.

Since the TTL and ANSN fields are mutable they are set to the constant value, zero,

before sign() or verif() is applied.

sign(id, k−id,message)→ uniquesignature (2.1)

veri f (origin, k+
origin,message)→ {valid, invalid} (2.2)

2.3 Formal Verification

The goal of verification is to prove that a protocol operates correctly with respect to

one or more stated properties. Properties express the operation of an algorithm usually in

terms of some output or state. Two common examples related to routing protocol

algorithms are loop-freedom and secure route creation. A survey of the verification

techniques commonly applied to MANET routing protocols is available in [10].

A verification method must provide some way of modeling an algorithm and a

systematic way of either proving or disproving the desired properties of the algorithm.

The task of verification ultimately should result in a proof of correctness or a

counter-example for the algorithm and property. Methods for finding the counter-example

25



are known as model checkers, those for finding proofs are referred to as theorem provers.

In performing the verification of MANET routing protocols it is far more common to find

model checkers.

Model checkers exhaustively search a model of an algorithm for property violations

and provide counter-examples if property violations are found. This method analyzes all

possible states of the system and can be accomplished by a mathematical construct or a

computer program. The algorithm’s model must accurately represent the behavior of the

system. The counter-example is the set of events leading to a property’s failure. The

abstraction required for modeling algorithms is dependent on the model checker, and

usually is a straightforward translation from an algorithm’s procedure.

Theorem provers attempt to provide a proof explaining why a particular property

holds in an algorithm. The proofs provided can be cryptic because the correctness of the

algorithms and their associated properties are modeled in complex, mathematical

abstractions. When using theorem provers the algorithms and properties must be put into a

mathematical form that the prover can interpret. This transformation generally requires

modeling the algorithm in abstract mathematical terms.

2.3.1 Verification Methods. The verification of routing protocols has been

performed in many different ways. Andel [10] presents the categories of non-exhaustive

and exhaustive verification methods. Non-exhaustive verification methods encompass

visual inspection and performance oriented modeling, or simulation. Exhaustive methods

include analytical proofs, simulatability models and formal methods.

Simulation relies on tools such as Network Simulator 2 (NS2), OPNET c©, Global

Mobile Simulator (GloMoSim), and NetSIM. Simulation falls short of actively proving

that a distributed system will perform correctly or as expected. These tools provide

statistical data that enable the comparison of two protocols. An example: protocol X

reliably delivers more packets than protocol Y , therefore X is more secure than Y . This

26



statement is not necessarily true because X might deliver zero packets when a discrete

attack or error occurs. In lieu of protocol correctness, most researchers provide extensive

performance analysis through network simulation.

Visual inspection is another commonly used method. In this method, a protocol is

published and attacks and errors are later published against it. Then, a new modified

version of the protocol is published to counter such attacks and errors. Such methods are

prone to oversight because the technique is solely based in human intuition and

understanding of the routing protocols.

Analytical proofs require experienced mathematicians familiar with routing

protocols. Simulatability models require mapping protocols into complex mathematical

formulations, requiring assumptions about a protocol’s operation that may exclude

possible behaviors or attacks in the real protocol. Formal methods come in a variety of

forms from the hand-based modeling of strand-spaces to computer-based model checking.

Formal methods seek to represent a system accurately and provide exhaustive searches of

the system for counter-examples; however, not all formal methods can provide a counter

example when a violation is found.

The set of tools available in formal methods include strand-spaces, the Simple

Promela Interpreter (SPIN), Automated Validation of Internet Security Protocols and

Applications (AVISPA), Cryptographic Protocol Analysis Language - Evaluation

System (CPAL-ES), process calculus, and petri nets. All of these methods have been

applied in some form to secure ad hoc routing verification. Some of the tools are

exclusively designed for verifying cryptographic security protocols but have been cajoled

into the verification of MANETs. Newer methods for ad hoc network verification have

recently been developed in the form of process calculi. Singh [27] proposes the ω-calculus

and applies it to verify a property of an ad hoc leader-election protocol. Buttyán and

Thong [28] form their own calculus for the verification of secure, reactive,

27



accumulation-based routing protocols. Their calculus can be formalized using the

ProVerif tool and used to automatically verify security properties of reactive ad hoc

routing protocols.

For the analysis of a secure protocol an attacker model must be developed that

provides specific capabilities. Andel [2] proposes the concept of applying a Dolev-Yao

[29] attacker. This attack model gives adversarial nodes the ability to listen, inject,

modify, replace, or create routing packets. This adversarial model can be thought of as a

wiretap into a wireless network. Such an adversary may choose to participate in the

routing protocol. A successful Dolev-Yao attacker might be able to advertise a shortest

path between a source and destination, thus controlling traffic over that path. Ultimately,

finding attacks against secure protocols requires accurately modeling the protocol and

thoroughly understanding what an attacker may need to violate security.

2.3.2 Applying Formal Verification to MANETs. Process calculus to refers to the

whole class of calculi that have been derived from the theoretical work initially performed

by Turing [30]. Turing developed what is commonly known as λ-calculus, inspiring the

creation of many other calculi. π-calculus was designed to aid in the verification of

cryptographic protocols. More recently Singh [27] developed the ω-calculus which can be

used to model mobility of nodes in an ad hoc network. This is novel and extremely

beneficial to the field based in process calculus. Buttyán and Thong [28] have extended

Singh’s work by creating a process calculus capable of modeling mobility in addition to

the concept of bi-similarity which can be used to verify security properties of reactive ad

hoc routing protocols.

Andel’s definition of security agrees with that of Buttyán and Thong [28] who

compare an ideally secure network to a network with unknown security properties using

bi-similarity. The basis of their research is to show that an ideal protocol forms a network

that is indistinguishable from the one being analyzed. Buttyán and Thong develop a

28



process calculus to support their analysis based on the ω-calculus [27] and π-calculus used

for analyzing cryptographic protocols. This methodology requires the security property, in

this case the bi-similarity of routes, and the protocols to be modeled within the process

calculus. The protocols analyzed are the Secure Routing Protocol (SRP) and Ariadne.

Also, using a bi-similarity, Ács [19] discovered that the Ariadne routing protocol is

actually insecure. Ács provides two exemplary attacks against Ariadne that show an

adversary advertising a false route which the protocol accepts. Andel [2] is able to

automate the process of discovering this attack on Ariadne. Andel’s approach replaces the

process calculus with a model checker capable of exhaustively searching for security

violations, expressed as properties. The attacks analyzed do not consider node mobility,

and are effective only in specific topological configurations.

SPIN [31] is a widely used logic model checker, i.e., a verification system. The tool

is designed to verify the correctness of distributed systems where several processes are

executing concurrently. The Process Metalanguage (Promela) is used to define models in

SPIN. Processes are the primary abstraction and each process runs concurrently with all

others allowing interaction in interesting and often unexpected ways. For a given Promela

model, SPIN is able to exhaustively explore all possible combinations of concurrent

interaction.

Promela processes can model the behavior of ad hoc nodes. SPIN enables the

concurrent execution of these node models. Andel [2] and Wibling [15] have applied

SPIN to the formal verification of ad hoc routing protocols. Wibling [15] performs

modeling in Promela that includes transitions between topological network configurations.

This approach results in state-space explosion and keeps Wibling from completing an

exhaustive search of security properties on all possible network topologies. Andel [2]

improves upon this SPIN modeling by treating every possible network topology as a

unique verification task. For example, given a five node bi-directional network there are

29



1,024 different verification tasks. This technique mitigates the state-space explosion

problem experienced by Wibling. So far, the approach in Andel [2] applies only to

reactive, accumulation-based routing protocols.

The AVISPA 2 project, short for automated validation of Internet security protocols

and applications, provides a framework for protocol validation via separately maintained

tools. The validation portion of AVISPA consists of the tools Constraint Logic-Attack

Searcher (CL-AtSe), On-the-Fly Model Cheker (OFMC), and SAT-based

Model-Checker (SATMC) for performing model checking. The AVISPA project dates

back to 2003 and has been significantly utilized by researchers in the research field of

Internet-related cryptographic protocols. AVISPA is currently being replaced with the

Automated Validation of Trust and Security of Service-oriented

Architectures (AVANTSSAR) project.

AVISPA is similar to SPIN in that modeling is performed through processes. Benetti

[26] applies AVISPA to the ARAN and endairA protocols. In this application Benetti

formalizes specific scenarios from which an attack is revealed. Pura [32] presents the

formal verification of the ARAN protocol with the AVISPA framework. The method in

Pura [32] performs the entirety of the model checking in the verifier, to include

topological transitions. This approach failed to produce results even for three node

topologies. This failure was caused by an exponential increase in verifiable states of the

model. Pura claims the AVISPA framework is easier than SPIN. More research is needed

to further explore the possibility of using AVISPA in formal routing verification. Benetti’s

verification of endairA and the ARAN protocols with AVISPA reveal vulnerabilities

against the invisible node attack. However the verification was performed with only two

topologies and fails to exhaustively explore the search space.

2 http://www.avispa-project.org/

30



2.3.3 Promela for MANET Verification. SPIN is selected as the tool of choice for

modeling proactive and table-based routing protocols. See Section 3.3.2 for the

justification of this decision. An overview of SPIN and Promela’s features are now

provided in the context of formal MANET routing verification.

SPIN utilizes several faculties for mitigating state-space explosion. The most

important is design abstraction. It is not possible, or desirable, to model low level aspects

of a system in Promela. A model is best designed by considering the properties of interest

and then building the model to verify these properties. Aside from design abstraction,

SPIN also takes advantage of state reduction and compression as described in Holzmann

[31]. Some of the techniques described are COLLAPSE, for state reduction, and DMA

and BITSTATE hashing for state-space compression.

In a Promela model, limiting the number of processes, number of interactions, and

memory required for each state decreases the overall state-space. Unfortunately, this

requires a trade-off between model detail and model abstraction. The best models in

Promela are also the most abstract; they reflect the semantics of the underlying protocol.

Holzmann [31] encourages modelers to create the most abstract model first and to then

perform verification with the model. If the verification passes (no model property

violations are discovered), the modeler should add more detail and re-verify with the

updated model. This process continues until either an error is found or the modeler is

satisfied that the distributed system has been described in sufficient detail.

Promela and SPIN have several key features that are useful when building ad hoc

routing protocol models. At a high level the features can be divided into the categories of

correctness claims, state reduction, message passing, control structures, and

pre-processors. These key features are roughly presented in this order.

The never claim is an omnipotent process in SPIN which is executed after every

transition in a verification run. This process is able to observe all global and local

31



variables of each proctype using remoterefs. The never claim is strictly side-effect free.

The never claim provides Linear temporal logic (LTL), allowing logical properties to be

tested over time. A simpler correctness claim within SPIN is the assertion which functions

just like a C-style assertion.

There are many ways to decrease the size and number of states needed for

verification runs. Variables declared using the hidden keyword prevent the verifier from

tracking their state. Resetting variables to zero tends to reduce the amount of information

a verification run must store. SPIN’s verification engine has a built-in partial order

reduction algorithm which reduces the number of states and the size of those states that

must be verified. This reduction is employed by default in any SPIN verification and may

be augmented with other reductions such as COLLAPSE and DMA hashing, which both

compress the sate-vector, and BITSATE hashing, providing an estimate of exhaustive

verification. Unfortunately, the use of remoterefs is incompatible with never claims and

requires SPIN to forgo the standard partial order reduction techniques by setting verifier’s

the NOREDUCE compiler flag.

Creating deterministic blocks of Promela code, also known as d step, is a very

powerful and tricky tool for reducing verification state. The d step keyword in SPIN

allows sequences of code to execute as indivisible operations. There are two effects of

using d step{...}. The code between the brackets runs deterministically and, more

importantly, the transitions within the code are hidden during verification. The hidden

transitions lead to a huge reduction in the size of the state-space that must be analyzed.

When using d step, jumping in or out of the sequence and message passing is prohibited

by the compiler. Sequences are eligible for d step only if they are self contained, but are

allowed to read and write local variables.

In Promela the datatype chan, short for channel, provides the implementation of

message passing. Send, represented by !, and receive, represented by ?, are two operations

32



defined on a channel. The send and receive functions define communication strictly

between two processes. The easiest way to understand a Promela channel is to think of it

as a queue that can only be accessed by one process at a time. The possible operations on

the queue are to either put data on (send:!) or pull data off (receive:?). A channel’s send

and receive operations are random. The last sent item is not necessarily the next to be

received when more than one element is on the channel. If a channel’s buffer is full on a

send operation the sending process blocks until the channel is no longer full. Similarly, if a

channel is empty on a receive operation the channel will block until it is no longer empty.

Channels are initially specified with a buffer size that is a positive integer less than

256. A channel operates in one of two distinct modes which are defined by the buffer size.

When the buffer size is zero the channel performs synchronous communication, otherwise

the channel performs asynchronous communication.

A channel in synchronous mode forces a send operation in one process to be followed

immediately with its respective receive operation in another process. This mode causes the

sending process to surrender its execution to the receiving process, which is undesirable in

modeling ad hoc protocols because it restricts the execution of communicating processes.

For example, if node v1, from Figure 2.1, sends a message, either v0 or v2 will immediately

receive this transmission. If v0 is the first to execute, it has the potential to deprive v2 from

sending any messages by sending a message immediately back to v1 which will respond in

kind preventing v2 from every sending a message that is read by v1.

Asynchronous communication is more flexible. In this mode, two processes can

execute independently because the buffer size is at least one. Assume that each channel

for the wireless medium is set to a buffer size of one. In Figure 2.1, if v1 transmits a

HELLO message, the two processes, v0 and v2, are free to either immediately read a

message from the wireless medium or generate their own HELLO message. Both v0 and

v2 are prevented from sending a message simultaneously because only one message can be

33



held in the buffer going to the wireless medium. Neither process may permanently deprive

the other of sending to the wireless medium.

The keywords xr, for exclusive receive, and xs, for exclusive send, are able to

minimize the state associated with message passing. Both xr and xs aid in partial order

reduction of the verifier because it allows the state associated with receiving and sending

messages to be eliminated from specific channels.

Promela violates the traditional concept of loop and conditional structures. Unlike

traditional procedural languages the do and if structures are best thought of as a C-style

switch [1] except that each true case entry has equal probability of being executed and

execution does not fall through to the next statement, see Table 2.7 for a comparison.

Promela’s behavior is abnormal because, traditionally, the first true case is always

executed, whereas in Promela true case may execute.

Table 2.7: C switch statement [1] compared to a Promela if statement.

C switch statement (deterministic) Promela if statement (probabilistic)

switch (expression) {

case const-expr: statements

case const-expr: statements

default: statements

}

if

::bool expression -> statements

::bool expression -> statements

::else -> statements

fi;

The rationale for Promela’s probabilistic control structures is that distributed

processes are not synchronized. A process has the ability to perform some other task

while waiting for data. These same structures are not intended for deterministic control.

34



For example, when v1, of Figure 2.1, sends its HELLO message the wireless medium

process must send a message to every node connected to v1. This operation requires

iterating through the connectivity matrix to determine which processes must receive the

message. It is possible to use Promela’s do structure to achieve this behavior, but this adds

unnecessary complexity to the model. A better solution is to define every possibility as a

separate statement, which will always execute deterministically without abusing

Promela’s notation. A problem with approach this is that the such a model cannot scale to

larger network sizes.

SPIN utilizes the standard C pre-processor by default . The C pre-processor, although

powerful, lacks any functional features; it is typically employed to define key-value pair

substitutions in a program. A more powerful pre-processor, m4 3, is available. The m4

pre-processor provides greater flexibility with built-in support for recursive functions.

Using recursion in m4 it is possible to create scalable control structures and automate

other solutions usually performed by external tools or scripts.

Using the features of SPIN, Ruys [33] lays the groundwork for the wireless medium

in Promela. Originally the process was called a broadcast server process. Andel [2]

further refines this method into a wireless medium server. At its core, the wireless medium

server is the broker for all communications in the modeled wireless network. The server

has the ability to enforce connectivity rules between network nodes. The rules are a set of

links and can be defined in a Boolean matrix.

2.4 Chapter Summary

In this chapter the history of ad hoc networking was given. The classifications of ad

hoc routing protocols were presented and several protocols, both secure and insecure,

were introduced. Specifically OLSR and Secure OLSR were discussed in significant

detail. The existing verification efforts for secure routing protocols were surveyed.

3 http://www.gnu.org/software/m4

35



Finally, the pertinent details of SPIN and Promela for modeling ad hoc networks were

expressed along with a brief background on modeling a wireless medium in Promela.

36



3 Methodology

Verifying the security properties of ad hoc routing protocols can be achieved with a

combination of tasks. The process requires creative thinking and is by no means

formulaic. One task is developing the protocol model. Formal properties must be specified

as verifiable within the model. These verifiable properties may be useful in performing

model validation. Validation of the model is critical to show that it performs in accordance

with the protocol’s specifications and cryptographic assumptions. Another task is to

design an attacker with capabilities that may violate the protocol’s security properties

without violating the cryptographic assumptions. Attack models must be verified in all

potential message exchange and attack interleavings. Following completion of the

necessary tasks, the verifier is run given the protocol model, its security properties, and the

attacker. This chapter develops these tasks into a framework using the Simple Promela

Interpreter (SPIN) model checker. The framework is then applied to OLSR and Secure

OLSR protocols.

3.1 Goals

The goal of this research is to propose and evaluate a framework for the automatic

verification of proactive, table-based MANET routing protocols. The framework will

determine if a protocol meets its intended security goals. If it does, then the framework

generates a specific counter-example. The absence of a failure does not indicate that a

protocol is secure. In building a verifiable routing protocol model there are three specific

principles which drive the design of the final model:

1. Verification of routing security

2. Minimization of state-space associated with verification

3. Obey the protocol specification

37



Applying these principles drives the modeling effort toward the goal of creating a

model which is both tractable, in terms of verification, and outputs useful information

about the modeled protocol. Attacks against ad hoc routing protocols are often subtle.

This subtlety can be directly related to apparent non-deterministic behavior. An

appropriate ad hoc routing model must exhibit the same non-deterministic properties as a

physical implementation of the protocol. For this reason it is critical to follow the protocol

specification as closely as the modeling environment will allow.

3.2 Assumptions

Modeling secure ad hoc routing protocols requires several assumptions to be made.

Under these assumptions the formal verification of each protocol can be performed clearly

and concisely. Throughout Chapters 3 and 4 the following are assumed: bi-directional

links, no mobility, no simultaneous transmissions, attacks only add false routes,

cryptography is perfect, and benign nodes have a single identity.

Bi-directional links are assumed to exist between all networked nodes. Under this

assumption a Boolean matrix representing connectivity is always symmetric. In the

physical world bi-directional links are not always formed between nodes. Protocols must

be able to handle cases where a node can receive information but is unable to send

information, or vice versus. Handling non-bi-directional links has the potential to

introduce additional security flaws. For this research only bi-directional link cases are

examined, simplifying each protocol and reducing the set of possible network

configurations.

No mobility of nodes is considered during execution of the models. By their

specifications the models have the ability to handle node mobility; however, exercising

this aspect of each model adds a considerable number of states to the overall verification.

If modeling of mobility is desired for these models, then its implementation must occur in

the model of the wireless medium. By assuming no mobility it is unnecessary to model

38



link-breakage considerations that may be part of a protocol specification. The cases

analyzed in this research consist of static link configurations between nodes, known as

topologies. A security flaw one topology may not be possible in another topology. This

static analysis may prevent potential attacks from being discovered, but has been applied

by several other researchers [19, 2].

It is assumed that simultaneous transmissions are handled below the network layer.

Specifically the Institute of Electrical and Electronics Engineers (IEEE) 802.11-2007

standard handles simultaneous transmissions with Carrier Sense Multiple

Access/Collision Avoidance (CSMA/CA) at the data-link layer. The links between each

node are handled at the physical layer. A model, called the wireless medium server,

creates an abstraction for both the physical and the data-link layers. All node

communication is arbitrated by the wireless medium server. The wireless medium server

and protocol models work together to prevent simultaneous packet transmissions.

Only attacks against routing protocols that add false routing information are

considered. All other attacks against the routing protocol fall under the category of denial

of service. This assumption simplifies the definition of security by limiting its scope to

finding the class of attacks that add inaccurate routes to a network. This assumption only

affects the design of the security properties and is highlighted in Section 3.3.1.

Cryptography, alone, comprises an entire body of research. It is assumed that the

standard cryptographic mechanisms used by routing protocols, mainly public key

cryptography, are perfect. In addition, private keys are known by exactly one entity (node)

unless otherwise noted, and all public keys are accurately known by all entities (nodes).

The research goal is not to find flaws in the cryptographic primitives used by routing

protocols, rather it is to find flaws in the ways that these primitives are used.

The final assumption is that every benign node in an ad hoc network maintains only

one identity. This identity is synonymous with a network address and interface. Most

39



routing protocol specifications allow for multiple interfaces per node, but this information

is only used for making detailed forwarding decisions. Malicious node models are not

limited to a single identity, they have the potential to use multiple identities and share their

own cryptographic keys between any other malicious nodes. This capability allows

malicious nodes to work together using pre-shared information in their attempts to break

ad hoc routing protocols.

3.3 Framework

The goal of this research motivates a precise definition of routing security. Given the

definition of security a method is required for formally checking if this definition is

satisfied by a routing protocol. Armed with the proper definition of security and a

verification method a framework is designed which automatically performs security

verification on a specific routing protocol model.

The definition of security helps define the strategy for creating two security metrics,

φsubset and φcomplete. The metrics, also known as properties, are not equally applicable to

any protocol. Both assume that the underlying protocols distribute routing information

between nodes. The property, φsubset, is designed to work for any table-based protocol.

The other property, φcomplete, is limited to OLSR-like protocols.

Finally, a framework is presented which accepts a protocol specification and security

property. The underlying verification tool is SPIN. Using the considerations for modeling

MANETs in SPIN (see Section 2.3.3), the formal security verification framework’s design

is presented.

3.3.1 Security Metric. As defined by Andel [2], a routing protocol is secure if the

routes it creates are accurate and these routes are always accurate. In order to evaluate the

security of the protocol, a set of metrics must be implemented based on this formal

security definition.

40



In Andel [2], the verification of accumulation-based, reactive routing protocols is

straightforward. Every time a route is received its existence is verified with respect to the

physical network. This check is straightforward because every verifiable route is explicitly

returned in a RREP. Reactive protocols are also simplified because the routing process

terminates. In proactive protocols the routing process exhibits infinite execution. Proactive

protocols also require tables for storing hop-by-hop routing information. Both the infinite

execution and the table-based characteristics make proactive protocols particularly tricky

to verify.

In accumulation-based protocols a rule (assertion) can be placed in the requester

node that verifies all returned routes are physically possible. The verification of

table-based routing protocols is more complex. Table-based routing implicitly stores route

information at every node in the network; therefore, a rule must be executed every time a

node’s routing tables are changed.

Proving correct operation, in proactive or table-based protocols, requires showing

that routes are always accurate from the perspective of every node in the network.

Reactive, accumulation protocols have a specific start and end to route discovery. The start

is the initial RREQ and the end occurs when all RREPs have been received by the

initiating node. For reactive protocols, it is sufficient to verify a property against all

received RREPs. For proactive protocols a verification must show that a property always

holds. In table-based protocols routing information is distributed between every node in

the network, each table is subject to change at any time; therefore, it is necessary to show

that the individual routing tables are always accurate.

There are several potential strategies that can be used to prove that a routing protocol

functions correctly:

1. Source-destination route verification

2. Message flooding verification

41



3. Verification that routing tables form a subset of the link topology

Strategy 1 entails assigning one node a source identity and another node a destination

identity, then testing to see if the routes between the source and destination are accurate.

This method was applied in Andel [2] to accumulation-based, reactive protocols.

Unfortunately, the endpoints in table-based protocols do not know the route between a

source and destination. The only way to detect these source-destination routes is to send a

message over them. To apply this technique to table-based protocols it is then necessary to

model a data packet, for modeling the data forwarding phase of the protocol. This addition

adds unnecessary overhead to the verification by requiring a model of for data forwarding.

Implementing strategy 1 adds unnecessary complexity to the verification of table-based

protocols.

Strategy 2 identifies a source node which sends a packet throughout the network. If

the message is received at every node in the network, it is possible to conclude that routes

exist between every node in the network (especially under the assumption of bi-directional

links). In this strategy the routes used for the packet are unknown, making it impossible to

identify if the paths taken by the message are in fact legitimate paths in the network.

Strategy 2 is unable to detect the introduction of inaccurate routing decisions. This

strategy differs from strategy 1 because the flooded packet is common to the route

discovery phase of all table-based protocols. Strategy 2 provides the important ability to

detect when existing routes remain undetected by route discovery.

Strategy 3 relies on the idea that the links formed in a routing table must be a subset

of the links available in the physical network. Throughout the process any time a table is

modified it is checked for accuracy relative to the true set of available links. If the table

state is inaccurate at any point during route discovery, then the protocol has accepted an

inaccurate route, i.e., it is insecure.

42



Strategies 1 and 3 can detect the addition of false routes. Strategies 1 and 2 can both

detect when a route is denied. Given these two facts, strategy 1 would to be the clear

choice for verification. However, it is not possible to implement this strategy in

table-based protocols because the actual path is not known at any one node. One feasible

work around is to embed the route taken by a packet. This workaround adds the burden of

modeling message packets. The task of verifying when a route is denied, as in strategy 2,

is unnecessary according to the formal definition of routing security. Therefore, strategy 3

is accepted as the best solution for verifying the security of a routing protocol. The 3rd

strategy applies equally to any proactive or table-based routing protocol. The property,

φsubset given by Equation 3.1, utilizes this strategy.

Let the symbol φi represent the property that route i is accurate. Given N is the set of

nodes in a network, let

φsubset = φi∀i ∈ N (3.1)

Equation 3.1 (φsubset) implies that every route corresponds to some set of physical

links in the network topology and precludes the addition of routes that do not exist in the

network. An attack that injects non-existent routes or links is detectable by φsubset.

A definition of φsubset in terms of set notation is provided in Equation 3.2. The

formulation can provide a metric for determining when fake links are accepted in the

network. Let i.A represent the set of links node i has accepted, and B represent the set of

existing (true) links. If i.A ⊃ B, then at least some routes in i.A are inaccurate. When

i.A ⊆ B all routes in i.A must be accurate, hence:

φsubset =


true if i.A ⊆ B

false if i.A ⊃ B
(3.2)

43



An alternative notation for expressing 3.2 is to write |i.A \ B| == 0. The expression

evaluates to true if and only if i.A is an improper subset of B, otherwise the expression

evaluates to false (i.e., i.A is a superset of B). This notation is particularly useful because,

when using bit-vectors, set subtraction (\) can be implemented in constant time with only

bitwise operations.

To form Andel’s definition of security, stating that φsubset must always hold is

equivalent to requiring that an adversary cannot add a fake route at any time. The

expression always is a temporal statement, because it describes the proposition φsubset over

a period of time, in this case always. Linear temporal logic (LTL) provides the ability to

express such statements involving time. Equation 3.3 is written in LTL and reads always

φsubset is true. The statement is false if φsubset ever evaluates to false.

�(φsubset) (3.3)

The property φsubset cannot detect all actions of an attacker. Notably, φsubset remains

true even when existing routes are eliminated. An attacker capable of blocking existing

links from use is not detectable by this property. It is the responsibility of the protocol to

work around unusable or non-existent links and deliver traffic if the available links allow.

An adversary has the potential to deny physical links in many ways, but most of these lead

to immediate identification of the adversary’s location(s). A known location enables

targeted kinetic actions against the enemy. Although φsubset does not detect denial of

service attacks it is powerful enough to discover inaccurate routes.

A more stringent property, φcomplete, is used in the validation of the model, as

discussed in Section 3.5.3. This property can determine when existing links remain

undetected. Let the symbol φcomplete represent the property that all neighbors are

discovered and all messages flooded during route discovery (TC messages) reach all

44



nodes. Equation 3.4 can be used to show that OLSR builds an appropriate view of the

network. Section 3.5.2 implements φcomplete for the OLSR protocol.

^�φcomplete (3.4)

Both φcomplete and φsubset were initially designed with the purpose of verifying

security; however, φcomplete does not accurately test security because it is unable to handle

situations where an adversary forms the only physical link between a network and some

benign node. This situation is depicted in Figure 3.1. The use of φcomplete produces false

security violations when the malicious node, vA, fails to participate correctly in topology

control. The false security violations occur when a node is connected to the network only

through the adversary, vA. φcomplete detects that an MPR was not forwarded beyond the

attacker. This is not a security violation because the adversary does not create an

inaccurate route, yet φcomplete is violated in this situation.

vivAv j vk

Figure 3.1: The malicious node, vA, forms the only link between vi and the nodes v j and vk.

The property, φcomplete, is useful in validation i because it offers a more complete

protocol check, capable of demonstrating that MPR selection is consistent throughout the

network. As soon as an adversary is introduced φcomplete becomes useless.

Validation and security verification are both assisted by φsubset. Thiiss property only

tests to see that the set of MPRs learned at every node are actually possible in the network.

The property follows directly from the definition of security that prohibits the use of

inaccurate routes. Based on the definition of security, there are some results that can be

readily predicted for an attacker which assist in validation of the model. Also, because

45



φsubset matches the definition of security it is natural to use this property in security

verification.

3.3.2 Selecting the Verification Tool. Of the security verification methods

available, see Chapter 2, formal methods is the most appropriate to use with ad hoc

networks. This follows because formal methods have the ability to detect subtle errors in a

distributed system. There is a broad range of tools available for executing the formal

methods approach.

The selected formal method must provide enough generality to capture the

specification of any ad hoc routing protocol, be strict enough to avoid common errors, and

be flexible enough to avoid unnecessary implementation level details. These three criteria

preclude formal methods based in process calculus and strand-spaces because they are too

abstract to avoid common errors. The immediate problem being that these two methods

rely heavily on mathematical assumptions about the environment that cannot be tested.

The types of formal methods we choose to examine are those that enforce a structured

grammar. It is this limitation that allows the specification of a protocol to avoid common

errors.

SPIN [31] is a tool based in formal methods that is designed to provide an exhaustive

verification of distributed systems. Ad hoc networks are a form of a distributed system

and some researchers have applied SPIN in proving limited properties about specific ad

hoc routing protocols. Section 2.3.2 provides a review of research applying SPIN to ad

hoc networking. Process calculi provide proof systems with the opposite goal of SPIN.

SPIN has advantages over Buttyán and Thong’s [28] process calculus:

• SPIN allows models near implementation level rather than requiring abstract

mathematical models.

46



• SPIN’s verification process is exhaustive, the use of Büchi automata aid in partial

order reduction of the model’s state. In process calculi the models properties cannot

be partially proven.

• SPIN’s modeling environment provides an intuitive relationship to the distributed

process associated with ad hoc protocols. Again compare this to the abstract models

required for process calculus.

Only AVISPA and SPIN can meet the research goal. SPIN’s design abstraction, state

reduction, and state-space compression techniques have made it possible to verify the

properties of at least five node reactive, accumulation-based routing protocols. SPIN has

several clear advantages over AVISPA:

• SPIN is very mature and has been in development since 1989 whereas AVISPA was

developed in 2003.

• SPIN is designed with the goal of modeling and verifying distributed systems

whereas AVISPA’s core tools have been designed specifically for cryptographic

analysis.

• SPIN is maintained as a single unified tool, versus AVISPA’s use of the CL-AtSe,

OFMC, and SATMC tools.

• SPIN has several state-space reduction techniques built-in which can be invoked

when exhaustive verification fails. This process is in contrast to the push-button

verification scheme boasted by the AVISPA project.

SPIN also provides functionality for LTL which is necessary for capturing the

time-based variation of φsubset and φcomplete. In SPIN this functionality is achieved through

the use of the never claim (see Section 2.3.3). The claim examines the state of every

47



process in the model and determines if the property holds. By comparing each node’s

routing table to the true network topology it is easy to determine that no extra routes have

been added to the network. The LTL provides the necessary utilities for verifying that the

φcomplete and φsubset properties hold throughout the operation of the protocol. In this way, a

routing protocol model can be completely verified.

3.3.3 Design. The purpose of the framework is to verify security of a routing

protocol, in other words, that nodes learn only accurate routes and that those routes are

always accurate. This can be achieved by encoding a model in a context that supports the

security verification. Three major inputs to the model are the network’s connectivity

graph, T , a specific attacker model, A, and the correctness property, φ. The output is FAIL

if a security violation occurs for the set of inputs. An output of PASS implies only that the

protocol is secure for the given set of inputs. With an output of FAIL, the verifier produces

a trail file containing the states and transitions that cause the violation. Figure 3.2 depicts

this framework given the model, M.

PASSFAIL

m4→Promela

A

Secure.trail

M

φ ∈ ΦT

SPIN

Verifier (PAN)

Figure 3.2: Framework for model verification.

48



Table 3.1: Bit String Format, N=4

Binary Digit 5 4 3 2 1 0
Edge v2 − v3 v1 − v3 v0 − v3 v1 − v2 v0 − v2 v0 − v1

The two properties φsubset and φcomplete both are elements of Φ. Other properties may

be added to Φ for use in verification. The function topo(T ), see Listing 3.1, maps the input

T to the appropriate network topology. The input A is manually mapped to a set of attack

vectors.

The structure of T is adapted from [34], where a network topology is stored as an

integer. Each binary digit of the integer represents an edge in the topology. This encoding

is presented in Table 3.1. Each edge defines a pair of nodes, edge(vi, v j), which are either

connected, 1, or disconnected, 0. This property is expressed in Equation 3.5. Each edge is

bi-directional, as captured by Equation 3.6. No node is allowed to transmit to itself;

therefore, whenever i = j the two nodes are considered disconnected, this property is

defined by Equation 3.7.

edge(vi, v j) ∈ {0, 1} (3.5)

edge(vi, v j) ≡ edge(v j, vi) (3.6)

edge(vi, v j) = 0 if i = j (3.7)

An edge is uniquely mapped to every binary digit of an integer T. The algorithm in

Listing 3.1 provides one such mapping. The resulting array of edges has the properties

expressed in Equations 3.5-3.7.

With Listing 3.1, it is possible to enumerate all potential networks for N nodes. To

achieve this we start by finding the upper bounding topology, T Ω for a network with N

nodes. Given bi-directional links, there are (N(N − 1))/2 potential edges. Edges are binary

49



Listing 3.1: Function topo() for mapping T to a network topology.
1 row =0; column =0; n =0;
2 topo ( T ) {
3 i f ( t >0) {
4 i f ( row ≥ column ) {
5 row = 0 ;
6 column ++;
7 } / / Eq 3.5: 0 ∈ {0, 1} and T%2 → {0, 1}
8 edge [ n , n ] = 0 ; / / Eq 3.7
9 edge [ row , column ] = T%2; / / Eq 3.6

10 edge [ column , row ] = T%2; / / Eq 3.6
11 row++;
12 n++;
13 topo ( T / 2 ) ;
14 }

15 r e t u r n edges ;
16 }

(Equation 3.5), so there are 2(N(N−1))/2 unique ways to combine the edges. Finally T Ω is

calculated with Equation 3.8. 4

T Ω = 2(N(N−1))/2 − 1 (3.8)

For the purposes of this research, the number of nodes, N, is bounded. Andel [2]

limited reactive protocol verification to five-node networks. The model described here is

designed to scale up to eight nodes; however, N was limited to five nodes for analysis.

Exhaustive verification has been applied to four nodes, and non-exhaustive verification

has been applied to five nodes. In the OLSR model, four nodes reaches the practical limits

of available system memory (32 gigabytes) for exhaustive verification. When N = 4 there

are 64 potential topologies and when N = 5 there are 1,024 potential topologies. Not all

topologies need to be analyzed due to symmetric properties exhibited by some networks,

see [34] for an explanation. Furthermore, the topologies in an N-node network is a subset

4 T Ω is 1 less than 2(N(N−1))/2 because the lower bounding topology is 0.

50



of those in an (N + 1)-node network; therefore, verification of all (N + 1)-node networks

implies verification of all N-node networks.

For a large N, the verifier may never be able to explore all the states in all topologies.

Limiting verification to an estimate of exhaustive verification greatly reduces the time and

memory required to analyze a protocol. Most property violations should be revealed after

exploring only a few possible combinations of states. Upon reaching the first violation,

the protocol is deemed insecure. Security cannot be inferred when the estimated

verification completes because all possible combinations are not explored.

Modeling of the wireless medium in Promela requires a separate process to handle

broadcast communications. This process is used to enforce the physical restrictions of a

wireless topology. Even adversarial nodes are restricted to the topology rules of the

wireless medium. See Section 2.3.3 for the origins of the wireless medium server in SPIN.

The wireless medium server used in this research is depicted in Figure 3.3 and the

associated Promela pseudo-code appears in Listing 3.2. One key difference from Andel’s

server is that the connectivity matrix, con[id], is expressed as an array of bit-vectors

(bytes), rather than a two-dimensional array of bytes. This change alone reduces the

wireless medium’s state-space requirement from O(N2) to O(N). Another change is to set

the buffer size of channels to wm, to wireless medium, and from wm, from wireless

medium, to one. Every node must check that the to wm buffer is empty before sending.

This check is performed as an atomic operation. As a result, a node never blocks while

waiting for a buffer to clear. This restriction allows the sending node to perform some

other action until the to wm channel is clear. This approach further decreases state-space

because the channel buffers are as small as possible, size one, without triggering the

synchronous channel mode.

The m4 pre-processor (see Section 2.3.3) is used to improve the scalability of the

model. Specifically the code for the wireless medium server and associated connectivity

51



Wireless Medium

Visual Representation of Topology: #28

v1

Server
Process

Connectivity
Topology: #28

0 1 2 3
0 0 0 0 1
1 0 0 1 1
2 0 1 0 0
3 1 1 0 0

v0v3v2

Figure 3.3: Node v1’s communication is controlled by the wireless medium.

matrix is created dynamically. These two segments of code depend on the number of

nodes which the m4 macro infers from the topology flag T. Also, the definitions of

attackers are referenced at compile time. The flag A represents a specific attack model

which is defined in an associated file, attacks.m4. This file separates the attacker code

from the correctly specified protocol code. Various parameters and capabilities associated

with an attack vector are coded into the file. The use of attack vectors simplifies the

analysis of security by explicitly grouping a set of attacker capabilities and its associated

number of attacking nodes as a single entry.

In order to limit the state-space for of the model several decisions are made.

Throughout the model most global variables are hidden from the verifier because they do

not reflect routing state for any specific node. These variables are declared using the

hidden keyword. In the wireless medium, nodes exclusively send (xs) to the medium on its

input channel. Also, the medium exclusively sends on its outgoing channels (one per

node), which translates to an exclusive receive (xr) for the respective receiving node. Each

52



Listing 3.2: Wireless Medium Server Process.
1 chan to wm = [ 1 ] of t y p e { byte , byte . . . }
2 chan from wm = [ 1 ] of t y p e { byte . . . }
3 hidden byte d a t a . . . / / D e c l a r e a l l d a t a f i e l d s
4 hidden byte i d ; / / D e c l a r e i d f i e l d
5
6 proctype Wireless Medium ( )
7 {

8 xr to wm ; / / S e t to wm t o e x c l u s i v e r e c e i v e
9

10 f o r ( i : nodes ) / / m4 : Rpt n x t 2 s t a t e m e n t s f o r a l l i
11 from wm i = from wm [ i ] ; / / Copy from wm [ i ] t o from wm i
12 xs from wm i ; / / S e t from wm i e x c l u s i v e send
13
14 do / / Run s e r v e r p r o c e s s i n d e f i n i t e l y
15 : : to wm ? id , d a t a . . . −> / / L i s t e n form messages
16 f o r ( i : nodes ) / / m4 : p r i n t i f s t a t e m e n t f o r a l l i
17 i f / / I f id −− i ( l i n k ) e x i s t s ,
18 : : I S 1 ( con [ i d ] , i ) −> / / t e s t con [ i d ] f o r node i ( macro )
19 from wm i ! d a t a . . . ; / / t h e n send d a t a . . . t o i , p r o c e e d
20 : : e l s e −> sk ip ; / / e l s e n e x t s t a t e m e n t
21 f i ;
22 od ; / / Rinse and r e p e a t
23 }

node also maintains a set of scratch variables used for temporarily storing received data.

The scratch variables may be used for other purposes, but after use they are always

restored to a null state. The verifier does not have to track the status of a null variable, thus

reducing the state-space. The m4 pre-processor is useful in creating aliases for scratch

variables that reflect the specification’s terminology.

One of the greatest challenges in modeling routing protocols in general is using

efficient data structures. Promela is not a general purpose language so it lacks many of the

libraries that would be considered elementary for most programming languages. Routing

tables can be represented as bit vectors. Each binary digit’s position is reserved to

represent a node’s network address. The least significant bit corresponds to node v0 and

53



the nth bit corresponds to node vn−1. The basic bit-vector operations are defined using

Promela’s bitwise operators and m4 macros are used to improve this code’s readability.

An implementation of the Hamming Weight function is employed to calculate the number

of elements stored in a bit-vector (number of bits set) in a constant number of operations.

Also, the bit-vector data-structure allows the modification and reading of data to be

performed in O(1) operations. The number of bits required to represent all nodes is

equivalent to the number of nodes in the network, thus a byte (eight bits) can represent

eight nodes. Bit-vectors completely eliminate the need to iterate over elements for any

operations, significantly reducing complexity and overhead.

Promela’s remoteref mechanism is used to allow a never claim to access each node’s

state without modifying it. The use of remoterefs comes at the cost of abandoning partial

order reduction. A preferred solution, restoring partial order reduction, would be to

declare each node’s state globally with the local keyword. Despite this remoterefs are used

in the modeling effort.

The file, attack.m4, provides a one-to-one mapping between an integer, A > 1, and an

attack vector. A = 1 is reserved for the benign operation of a protocol, i.e., no attackers are

present. An attack vector is defined by a Promela proctype and number of attackers. The

proctype provides a definition of the attacker and its associated capabilities. In general, the

attacker is a specialized node designed to systematically violate assumptions of the

current routing protocol. Some attacker definitions are capable of collusion, meaning they

can work with other nodes in an attempt to violate security properties. An attack vector

can define one or more malicious nodes. Depending on the definition of an attacker it may

or may not collude with other attackers.

3.4 Attack Vectors

An attack vector is defined as a tuple containing the number of attackers, a trust

relationship set, and an attacker definition. An attack vector, A is characterized by the

54



Table 3.2: Trust Relationships (T) in Secure OLSR. B = {all node identities}

T C U Description

B {} {} Only trusted identities are present.

B ⊆ T {} One or more compromised identities.

B \ U {} B \ T Both trusted and untrusted identities.

B \ U ⊆ T B \ T One or more compromised and untrusted identities.

tuple A = (Na,T ,D) where Na is the number of attackers, T is the set of trust

relationships, andD is the definition of the attacker.

The attacker definition,D, is limited to providing the same capabilities that are

available to benign nodes. The definition cannot provide an attacker with the ability to

break cryptography based on the assumptions stated in Section 3.2. An attacker must obey

the rules and connectivity of the wireless medium. These limitations do not preclude a

slew of other possible behaviors. For example, two malicious nodes may be designed to

collude with one another and both node’s public and private keys may be shared. These

undefined behaviors allow malicious nodes to form complex attacks against a protocol.

The trust relationship set, T , describes the state of every identity’s public and private

keys in the model. A node’s identity is an element in the trusted set, T, if all benign nodes

possess the node’s associated public key. A node’s identity is in the compromised set, C, if

an attacker knows the private key for the node’s identity. A node’s identity is in the

untrusted set, U, if it is not in the trusted set, T. The tuple (T,C,U) defines a trust

relationship in Secure OLSR. All benign node identities are in T. The benign nodes do not

know which identities are in C. The possible combinations for the tuple T are presented

in Table 3.2. The case where T = {} is not considered because it is assumed that some set

of benign nodes exists and that these nodes have all established trust with one another.

55



An attacker’s actions are tested against the protocol. Depending on the actions

available a protocol may lead to the discovery of an unknown attack. It is also possible to

create an attacker such that it recreates a previously known attack sequence. Take, for

instance, the Invisible Node attack [35]. This attack consists of a malicious node that

relays data without modifying it. Due to this behavior otherwise disconnected nodes will

appear to be connected, but the malicious node can, at any point, filter non-control data to

make the link useless. This attack is effective in two cases. The first is if a benign node’s

sole connection to the network is through an invisible node, as shown in Figure 3.4a. The

second is when an invisible node adds an otherwise non-existent link to the network, as

depicted by Figure 3.4b. Cases where the invisible node is unable to add inaccurate routes

are presented in Figure 3.4c and 3.4d.

v0

I

v2

v1

(a) FAIL

v0

I

v2

v1

(b) FAIL

v0

I

v2

v1

(c) PASS

v0

I

v2

v1

(d)

PASS

Figure 3.4: Collection of topologies involving an invisible node, I. FAIL implies I adds at

least one false route. PASS implies I has no effect.

Five attack vectors are formulated in this section. Three of these attacks can be

considered toy attacks because they would be impractical against a network in which no

56



Table 3.3: Attacks Against Secure OLSR. Attack Vector: (Na,T ,D): Na is number of

attackers, T is a trust relationship,D is the definition of the attacker’s capabilities.

A Attack Vector D: Attacker Definition

i (0, ({B}, {}, {}),D) An attacker is not defined, all nodes are benign.

ii (1, ({B}, {vN−1}, {}),D) Byzantine node, vN−1, false routes added to own TC messages.

iii (1, ({B}, {B}, {}),D) Modifies received TC messages, all id’s compromised.

iv (1, ({B}, {}, {}),D) Relay received traffic, “Invisible node attack.”

v (1, ({B}, {}, {vN−1}),D) Modifies received TC messages, no id’s compromised.

private keys are compromised. Despite this, these attacks aid in the validation of the

secure protocol model. Two other attacks are more realistic in that they do not require the

use of any compromised cryptographic material. All five attacks have outcomes which can

easily be derived without the verification framework; therefore, the expected results can be

contrasted with the achieved results to demonstrate that the model does the right thing.

Table 3.3 provides a summary of the five attack vectors. A roman numeral is assigned to

each attack vector for reference.

Attack i: Attack i is the benign case where no attacker is imposed on the network.

The vector A = (0, ({B}, {}, {}),D) describes a case where there is no attacker, and the trust

relationship consists solely of trusted, uncompromised identities. This case is of interest

because it shows that the secure protocol functions correctly under normal circumstances.

In fact, Secure OLSR functions no differently than OLSR under attack vector i.

Attack ii: Attack ii is an attack in which a trusted node, containing its own key,

falsely advertises routes in the network. The attack has the effect of adding false

advertisements from itself to any other nodes. This vector is A = (1, ({B}, {vN−1}, {}),D),

thus one malicious node is defined and it assumes the identity of node vN−1. This attack

57



requires knowledge of a single trusted node’s private key. This type of attack is commonly

referred to as a Byzantine, or trusted insider, attack because the trusted node deviates from

standard operating procedures in a potentially threatening way.

Attack iii: The vector A = (1, ({B}, {B}, {}),D) details an attack where all trusted

identities are compromised. One attacker is defined that has access to all compromised

private keys. This scenario gives the attacker the ability to change every control message.

The attacker definition,D, limits itself to modifying TC messages which it is assigned to

forward or create by the protocol. This attack describes an attacker that is both Byzantine

and maintains multiple identities, commonly referred to as a Sybil attacker. Since the

safeguard provided by private keys is removed a secure protocol cannot counter such an

attack. This type of attack is extremely difficult to produce in practice because private

keys are generally guarded with the utmost care. This attack is explored because of its

ability to demonstrate the correct function of a secure protocol.

Attack iv: The invisible node attack is a simple, robust attack. Its associated vector,

A = (1, ({B}, {}, {}),D), features the same trust relationship as vector i; however, one

attacker is defined that relays control traffic to its neighbors without modification.

Relaying can add links without knowing any cryptographic material. This attack is an

example of an outsider with the ability to add false routes to the network.

Countermeasures to the Invisible node attack rely on precise positioning and timing

information, one such scheme is described in [36].

Attack v: In attack v, A = (1, ({B}, {}, {vN−1}),D), the untrusted node, vN−1, modifies

and forwards TC messages; however, the node is unable to generate a valid signature for

the new messages because it does not know any trusted private keys. All messages

modified by node vN−1 have a non-valid signature; therefore, all modified control

messages are ignored. Vector v is an example of an ineffective outsider attack against

58



Secure OLSR. The attack is useful in demonstrating that the model does the right thing by

preventing such a simple attack.

The attacks discussed in Section 3.4 are specific to the OLSR and Secure OLSR

protocols. Other table-based protocols do not necessarily share the same features. Attack

vectors must be redefined for each specific protocol.

3.5 OLSR Model

Previous verification efforts have only analyzed reactive routing protocols. Verifying

reactive protocols is not trivial; however, the task is certainly less complex than verifying a

proactive protocol. OLSR is a proactive, table-based MANET routing protocol. OLSR

does not provide any security; therefore, the protocol should be vulnerable to any simple

attack that adds a malicious route to the network. Complete specification of OLSR is

available in [16], see Section 2.1.3.3 for an analysis of OLSR. The model of OLSR

presented here will serve as a baseline for demonstrating that proactive and table-based

protocols can be modeled for formal security verification.

3.5.1 Model. Proactive protocols periodically send updates and these updates are

sent indefinitely. Proactive protocols are said to exhibit infinite execution. In the case of

OLSR, HELLO messages are generated indefinitely. Currently the design of the wireless

medium server makes it impossible to model the infinite execution of OLSR. Infinite

execution is prevented in the model by eventually stopping updates. This behavior is

achieved by reaching a steady state. For OLSR, a steady state is defined as the point at

which every node’s Neighbor and MPR Selection sets no longer change. Achieving this

state is accomplished by restricting when a HELLO message can be sent. Steady state is

possible only under the assumption of no node mobility and it maintains the semantics of

the protocol for the purpose of modeling.

59



In order to achieve steady state, the model is limited such that only one node is

initially allowed to send a HELLO message. The identity of the initiating node is not

important; however, it must be connected to the network topology. If it is not connected,

then the HELLO is never received by any other node, leading to premature steady state. In

the model, v0 is always selected as the HELLO initiator. 5 Upon processing a HELLO

message a local Boolean flag, say c, is set to true if either the Neighbor or MPR Selection

sets change. The node may transmit a HELLO message as long as c is true. The variable c

is set to false when a HELLO message is sent by the node. With these minor

modifications, the infinite execution of OLSR is mitigated and the non-deterministic

interleaving of messages is maintained.

In the case of the MPR Selection algorithm it is easy to assume that the selected

nodes will always be sorted in the same order. For example, if two nodes have the same

degree then the node with the lower network address is always selected. This last selection

decision is not defined in RFC 3626; therefore, the result of the sort operations is not

necessarily deterministic. To reflect non-determinism, the sort function initially chooses

either the lowest or highest network address when there is a tie. Unfortunately, if there is

more than a two-way tie, no nodes between the highest and lowest values will be selected

as an MPR. Future versions of the model should be modified to reflect such possibilities.

In the OLSR model, the MPR Selection algorithm alone would make any verification

impractical; however, the use of the deterministic code block, d step, removes visibility of

all but the final results of MPR Selection. Similarly, d step can be applied to new and

forwarded TC messages. By delaying their transmission and maintaining a forwarding list

of the TC messages the internal transitions associated with message generation and

processing is hidden. Data are stored in each node’s topology control table. TC messages

in the forwarding list must enter contention for the node’s transmitter and the wireless

5 The physical network topologies are limited to only those topologies in which v0 is connected. This
decision reflects that each node is homogeneous and prevents a premature steady state.

60



medium. The forwarding list slightly increases the state required per node but

significantly reduces the number of reachable states by hiding the transitions associated

with generating and forwarding TC messages.

The model of messages are composed as described in Tables 2.3 and 2.4. Table 2.2

reflects the local state variables in the OLSR model. The state-diagram, Figure 3.5, is

generated directly from a Promela model of OLSR with three nodes. The state-diagram

captures all finite automata states visible to the verifier for each node. On receive (< tc >

or < hello >) and transmit (tc or hello) transitions the model is either receiving or

sending a message from the wireless medium process. A detailed discussion of the

wireless medium process is given in Section 3.3.3.

Add to
Forwarding Set

tc newer

else

<hello> <tc>Fwd
tc

mpr0

mpr Selection

Fwd
tc

else

mpr1

else

else

tc

Selected
as mpr

else

mpr2selector>0
∧¬ yield

hello

id==0

hello changed Fwd
tc

S74

S19

Node

S48

S2

S36

S82

S6

S80

S56

S20 S68

S55

S30

S29

S62 S49

Figure 3.5: State machine for OLSR. State numbers are assigned automatically by SPIN.

3.5.2 Model Validation. Validation is a necessary goal for ensuring that each

model accurately reflects the intended protocol. Four resources for meeting this goal are

61



the protocol specification, SPIN in simulation mode, SPIN generated finite automata

diagrams, and SPIN in verification mode.

Each Promela model is based on an author’s description of the protocol. The modeler

makes decisions based on the protocol’s specification. This leads to a basic, intuitive

validation of the model. This form of validation alone is insufficient because the protocol

can be misinterpreted.

The Promela model can be run in SPIN’s simulation mode to strengthen the intuitive

validation. When a model is run in simulation mode a single, random seed is selected

which determines how the model’s communicating processes will be interleaved. During a

simulation the user can select to output the messages exchanged in the system, the

complete state of each process, or any other print statements as needed. A combination of

these outputs can show how the protocol performs with the current seed. A logical

comparison of the protocol’s outputs against the prior expectations validates the model. A

few random simulations, monitoring this invariant, provide confidence that the invariant is

not violated. However, it is important to note that random simulation is insufficient

because it is possible for a different seed to produce a case where the observed behavior

does not hold.

Another, more practical, tool available from SPIN is a diagram of a model’s finite

state automata. Given the finite automata it is possible to map every model decision to one

that would be made by the protocol specification. Figure 3.5 provides an example for the

model of OLSR. Every state transition relates to an action in the OLSR specification.

The strongest tool available for validation of the model is SPIN in verification mode.

Verification allows for the testing of an invariant, such as only nodes with a non-empty

selector set generate topology control messages. Completely validating the model in this

manner would be prohibitive because there are too many trivial properties. However, it is

possible to use a property, for example φcomplete, to validate that the larger goals of a

62



protocol specification are met under normal operating conditions. In this validation

process φcomplete is being used to show that route discovery messages reach every node and

that only accurate routes are created, as discussed in Section 3.3.1. For this step the

consideration of the benign attack vector, A = 1, is sufficient to provide validation.

The property, φcomplete, needs to be implemented for the OLSR protocol. There are

two distributed views of the network that can be used for implementing φcomplete. These are

the views provided by each node’s Neighbor and Topology Control sets. Both views

combined form a subset of the existing link topology.6 The verifiable property becomes

that every node: learns all of its neighbors, learns every topology control decision (MPR

set), and that all of the links in these views are accurate.

In Equation 3.9, V is the set of all nodes, i.n is the set of nodes neighboring i, and

con[i].n represents the set of nodes with edges to node i. This property expresses that all

discovered neighbors are in fact neighbors in the real topology. If they are not, then the

node’s neighbor set must be different from the connectivity matrix, con[i]. This property

initially evaluates to false but should eventually, always become true.

A = ∀i ∈ V(i.n = con[i].n) (3.9)

In Equation 3.10, V is the set of all nodes, i.mpr[ j] is the set of nodes selected by j as

MPRs for j, and con[ j] represents the set of nodes with edges to node j. This property

captures the behavior that a node’s MPR set is shared between all nodes in the network. If

no MPR sets are formed, then this property is true. If node j has no neighbors, then

¬con[ j] evaluates to true and j’s topology control status is not considered. Initially,

property 3.10 will evaluate to true because all MPR and Topology Control sets are initially

empty. Once one or more MPR sets are formed the property will evaluate to false. After

6 The network view is a subset because the use of MPRs masks some potential links.

63



these changes propagate through the network, property 3.10 should eventually, always

evaluate to true.

B = ∀i ∈ V(∀ j ∈ V( j.mpr[ j] = i.mpr[ j] ∨ ¬con[ j])) (3.10)

The propositions 3.9 and 3.10, can be combined, leading to the final proposition

φcomplete = A ∧ B. This implementation captures the behavior that TC messaging

disseminates the MPR selection information to all nodes in the network i.e., Strategy 2 in

Section 3.3.1. If the MPR sets never provide complete network coverage, then φcomplete

evaluates to false. Using this implementation of φcomplete it is possible to validate OLSR’s

neighbor sensing and topology control. The LTL formula of Equation 3.4 is used to verify

that φcomplete is eventually always true. If this claim is not accurate in all benign cases, then

the protocol model does meet the protocol specifications.

3.5.3 Security Verification. The OLSR protocol is not specified with the goal of

security and it has no security features. The trust relationship, T , associated with the

attack vectors is meaningless, OLSR accepts all nodes as trusted. This blind trust means

that an adversary can easily add false routes to the network.

Using the security property, φsubset, and the topologies T = {0..63}, it should be

possible to show that OLSR is vulnerable. First attack vector i is tested. For this

experiment it is expected that the framework outputs PASS in all cases because no

malicious nodes are used. Next attack vector v is tested. Under this attack the malicious

node vN−1 is expected to easily add false routes, resulting in the output of FAIL in any

configuration where vN−1 is selected as an MPR. The results of these two experiments

affirm the expectations, as shown in Chapter 4.

64



3.6 Secure OLSR Model

Secure OLSR is a minimally modified version of OLSR that adds security. The

modifications to OLSR do not change its fundamental operation. Because Secure OLSR

closely resembles the original most of the model features still apply. This version of

OLSR adds two functions sign() and verif() which together form the basis for securing its

operation. Section 2.2.3 provides the details on how these two functions provide security

to OLSR.

3.6.1 Model. A model of Secure OLSR must provide implementations for sign()

and verif(), Equations 2.1 and 2.2 respectively. The implementation forgoes cryptographic

operations necessary in a real-world implementation as long as all nodes, including

adversaries, are bound to the rules of a trust relationship, T . The trust relationship, T , is

defined in Section 3.4.

The ideal implementation of sign() maps a unique value to every {private key,

message} pair. The only way to generate the unique signature is to possess the private key.

Let us define T as the set of trusted node identities, and C as the set of trusted but

compromised node identities, and U as the set of all untrusted node identities. The signing

function can then be expressed in Equation 3.11, where id replaces both the private key

(k−id) and message, and identity represents the true identity of a benign node.

sign(id a,message b)→



a if id == identity

a if id ∈ C

j, j ∈ U otherwise

(3.11)

The implementation of sign() in Equation 3.11 ignores the message field which

means that there is no way to associate the original message with the result of the

65



function. The solution is to always send the result of sign() along with its corresponding

message. This solution is allowed according to the Secure OLSR specification.

When a control message, say < origin,message, signature >, is received it is verified

by verif(). If the function call returns “valid” then message is processed in accordance

with OLSR, otherwise the control message is discarded. It is assumed that the message

corresponding to the signature is received in the same packet. Equation 3.12 provides a

model of verif():

veri f (id a,message b, signature c)→



‘valid′ if a == c ∧ a ∈ T

‘valid′ if a == c ∧ a ∈ C

‘invalid′ otherwise

(3.12)

The first case in Equation 3.12 returns valid when a message is received from a

trusted node. The second case in Equation 3.12 returns valid if a message is received that

is using a compromised node identity. In all other cases the function will return invalid.

The modeled implementations of sign() and verif() are added to the OLSR model. To

implement Secure OLSR: Every HELLO and TC message is sent along with the result of

sign(), Equation 3.11. Every HELLO and TC message received is only processed if

verif(), Equation 3.12 returns the string valid.

3.6.2 Model Validation. Validation of Secure OLSR requires showing that the

sign() and verif() functions are implemented correctly. A good demonstration is that attack

vector iii will cause the framework to provide the output FAIL while vector v always

results in the output PASS for the inputs φ = φsubset and T = {0..63}. This result is

expected because iii and v use the same attacker definition, but their trust relationships

differ. In vector iii all private keys have been compromised, vector v has no compromised

keys. The compromised keys allow vector iii to modify control messages and provide the

66



corresponding signature. The results of these two validation runs are provided in Chapter

4 and correspond to the expected outcomes.

In addition to validating the two new functions it is also necessary to validate that

Secure OLSR does not affect the original validation. A validation run with A = i,

φ = φcomplete, and T = {0..63} should provide sufficient evidence that the Secure OLSR

model behaves no differently than the original. In this case the output should be PASS for

all inputs. Chapter 4 captures the results which validate Secure OLSR.

3.6.3 Security Verification. Security verification can be performed exhaustively

over all inputs, T = {0..63}, φ = φsubset, A = {i..v}. Any violations of φ will reveal the

counter-example showing the steps leading to the property violation. The state-space

required for the set of topologies T = {64..1023} (i.e., all five-node networks) is too great

for performing an exhaustive verification. As a result, only estimates of the full

state-space search are possible. This non-exhaustive verification is performed by setting

the verifier’s BITSTATE compilation flag. Using the bit-state approximation should reveal

most security violations and provide the appropriate counter-example; however, this does

not guarantee that a violation will be found even if it exists for the specified inputs. The

Secure OLSR model understands the trust relationships, T , provided in the attack vectors.

For this reason attack vectors with no compromised keys should be unable to add false

routes. Any findings to the contrary will reveal an unknown attack against Secure OLSR.

The expected outcomes for each attack vector are presented below. Results for all

scenarios are available in Chapter 4.

Attack i No attackers are defined, the framework should always output PASS.

Attack ii The attacker contains a single compromised identity. With this identity the

attacker generates arbitrary TC messages that contain false routes. Since the identity

67



of the attacker is trusted nodes in the network will accept the false routes introduced

by the attacker.

Attack iii The attacker contains compromised identities for all node identifiers. Given

this information the attacker modifies and signs TC messages that it is either elected

to forward or generates to advertise itself as an MPR. Because of the compromised

identities and attacker definition the framework should output FAIL whenever the

attacker node would be selected as an MPR.

Attack iv Although no identities are compromised Secure OLSR is unable to defend

against relay attacks. Such attacks are independent of the current trust relationship

because the malicious node does not attempt to modify any relayed control traffic.

An output of FAIL is expected any time the attacker joins two benign nodes that

share no common links.

Attack v The attacker definition is equivalent to iii but no identities are compromised.

The security features of Secure OLSR are expected to prevent the injection of any

false routes so the framework should always output PASS for this attack vector.

3.7 Chapter Summary

This chapter on the research methodology has presented the goals and assumptions of

the security verification framework for secure MANET routing protocols. A justification

of the framework’s core model checker, SPIN was given. The design of the framework

was presented along with techniques for improving the tractability of MANET routing

protocol models. Finally, both OLSR and Secure OLSR models were built and the

validation and verification strategies were motivated for each model.

68



4 Results

A validation and verification strategy was proposed in Section 3.5 for the OLSR

protocol. This chapter presents the results of this validation and verification and compares

them with the expected outcomes. The chapter also provides the results for the validation

and verification of Secure OLSR as discussed in Section 3.6. These results are compared

to the expected outcomes for each experiment.

4.1 OLSR Validation and Verification

Exhaustive verification of the OLSR model for inputs I = {A = i, T = {0..63}, and

φ = φcomplete} returns the string PASS (i.e., no security violation) for all T ∈ T. All benign

network topologies in T are considered secure when no attacker is present. The result

proves that for the verified topologies the model never violates φcomplete; thus, the model

provides the same neighbor sensing and topology control that would be expected from any

node in an OLSR implementation. These results demonstrate that the OLSR model is

valid (see Section 3.3.1).

For the inputs I = {A = i,T = {0..63}, φ = φsubset}, an exhaustive verification is

performed. The framework provides the output of PASS for all I, which is the expected

result since no malicious nodes are introduced. Next I = {A = v,T = {0..63}, φ = φsubset} is

tested. Here, the attack vector, A = v, represents a single attacker that replaces the last

node, vN−1, with a malicious node. This malicious node adds false routes to all TC

messages it forwards or generates. Exhaustive verification over all inputs in I returns FAIL

(i.e., φsubset is violated) under topologies 26, 28, 30, 41, 44, 45, 49, 50, and 51. The

configuration of the failing topologies is generalized by Figure 4.1a. The malicious node,

B, advertises false routes to its neighbors when it has been elected as an MPR by v j or vk.

In addition, v j advertises that it is an MPR for vi but B modifies this advertisement before

69



forwarding. The property φsubset detects this because the Topology Control set of vk is

eventually inconsistent with the Topology Control set of v j.

Continuing with input I = {A = v,T = {0..63}, φ = φsubset}, the verification reports

that topologies 57, 58, 60, ... return PASS (i.e., the protocol is secure for the inputs).

Figure 4.1b represents the general case for these topologies. Node B is elected as an MPR

by all benign nodes, and B always modifies this information by advertising that it has a

link to all benign nodes. It follows that vi, v j, and vk have consistent TC sets; therefore, no

property violation is found because B’s advertised routes exist. The failure to detect a

malicious route in this case is acceptable because the goal of analyzing security is only to

show if B can add an inaccurate route to the network.

vi vkv j B

(a) T=26, 28, 30, 41, 44, 45, 49, 50, 51

vi vkv j B

(b) T=57, 58, 60, ...

Figure 4.1: Generic networks where i , j , k and B is malicious.

4.2 Secure OLSR Validation

The attack vectors can be applied in order to show that the model of the Secure

OLSR protocol accurately reflects the protocol’s specifications. Specifically, attack

vectors i, iii, and v are used for model validation against the Secure OLSR specification, as

discussed in Section 3.6.

The attack vectors i and v are expected not to affect the specification’s operation, and

the model should reflect this behavior. Clearly, the cases where attack vector i is applied

will have no impact on the model because no malicious nodes are defined. When vector v

70



is applied the model will block all untrusted nodes. Against i and v, the protocol should

behave no differently than it does in OLSR.

Attack vector iii reflects what happens when the fundamental cryptographic

assumption of private keys fail, the expected result is that an attacker can compromise any

node’s routing information. When vector iii is applied, the model will be vulnerable to any

actions of the attacker because it can forge messages for any benign identity. In this case,

the attacker only adds false routes to TC messages. Against iii, the protocol is

compromised and should be completely vulnerable.

With these three attack vectors, it is possible demonstrate that the Secure OLSR

model performs in accordance with its specifications. Attack vectors i, iii, and v validate

the fundamental mechanism used for securing OLSR. Vectors i and v should be thwarted

by the security mechanism; vector iii should fail in some instances because it breaks the

cryptographic premise that private keys are private.

Under attack vector iii, an attacker with knowledge of all private keys is shown to add

inaccurate routes to a Secure OLSR network. With inputs A = iii, T = {0..63}, and

φ = φsubset the verification demonstrates that in a subset of T the attacker successfully

provides inaccurate routes, as shown in Table 4.1. Inaccurate routes are only found in

topologies where the attacker is elected as an MPR. The property, φsubset, reveals that

Secure OLSR is vulnerable to attack vector iii. This result is expected because the vector

violates the premise that private keys are kept private.

In attack vector v, the attacker modifies TC messages before transmission, but fails to

produce valid signatures for the modifications. Since the signatures are invalid all

modified messages should be ignored. The inputs A = v, T = {0..63}, and φ = φsubset are

tested to show that false routes cannot be introduced. The results, in Table 4.2, show that

no inaccurate routes are added to any topologies in T by attack v. From these results it is

71



Table 4.1: Verification against attack iii: Omnipotent

T φsubset T φsubset T φsubset T φsubset

0 PASS 16 PASS 32 PASS 48 PASS
1 PASS 17 PASS 33 PASS 49 FAIL
2 PASS 18 PASS 34 PASS 50 FAIL
3 PASS 19 PASS 35 PASS 51 FAIL
4 PASS 20 PASS 36 PASS 52 PASS
5 PASS 21 PASS 37 PASS 53 PASS
6 PASS 22 PASS 38 PASS 54 PASS
7 PASS 23 PASS 39 PASS 55 PASS
8 PASS 24 PASS 40 PASS 56 PASS
9 PASS 25 PASS 41 FAIL 57 PASS

10 PASS 26 FAIL 42 PASS 58 PASS
11 PASS 27 PASS 43 PASS 59 PASS
12 PASS 28 FAIL 44 FAIL 60 PASS
13 PASS 29 PASS 45 FAIL 61 PASS
14 PASS 30 FAIL 46 PASS 62 PASS
15 PASS 31 PASS 47 PASS 63 PASS

concluded Secure OLSR prevents outside attackers from adding false routes for the

specified set of inputs.

Using inputs A = i, T = {0..63}, and φ = φcomplete the verification reveals no

violations. Since every node generates control messages that are signed correctly, then

every node should only receive messages that are valid. Applying φ = φsubset yields no

violations, as shown in Table 4.3. This behavior is equivalent to that of the OLSR model;

therefore, the results show that by implementing Secure OLSR the underlying behavior of

OLSR is not changed. Table 4.3 provides a summary of the results given A = i,

T = {0..63}, and φ = φcomplete and A = i, T = {0..63}, and φ = φsubset.

4.3 Secure OLSR Verification

This section presents the verification of Secure OLSR’s security properties. It is

necessary to define the model’s inputs (A, T , and φ). A is any attacker vector i through v

72



Table 4.2: Verification against attack vector v: Outsider

T φsubset T φsubset T φsubset T φsubset

0 PASS 16 PASS 32 PASS 48 PASS
1 PASS 17 PASS 33 PASS 49 PASS
2 PASS 18 PASS 34 PASS 50 PASS
3 PASS 19 PASS 35 PASS 51 PASS
4 PASS 20 PASS 36 PASS 52 PASS
5 PASS 21 PASS 37 PASS 53 PASS
6 PASS 22 PASS 38 PASS 54 PASS
7 PASS 23 PASS 39 PASS 55 PASS
8 PASS 24 PASS 40 PASS 56 PASS
9 PASS 25 PASS 41 PASS 57 PASS

10 PASS 26 PASS 42 PASS 58 PASS
11 PASS 27 PASS 43 PASS 59 PASS
12 PASS 28 PASS 44 PASS 60 PASS
13 PASS 29 PASS 45 PASS 61 PASS
14 PASS 30 PASS 46 PASS 62 PASS
15 PASS 31 PASS 47 PASS 63 PASS

Table 4.3: Verification against attack i: Benign

T φcomplete, φsubset T φcomplete, φsubset T φcomplete, φsubset T φcomplete, φsubset

0 PASS 16 PASS 32 PASS 48 PASS
1 PASS 17 PASS 33 PASS 49 PASS
2 PASS 18 PASS 34 PASS 50 PASS
3 PASS 19 PASS 35 PASS 51 PASS
4 PASS 20 PASS 36 PASS 52 PASS
5 PASS 21 PASS 37 PASS 53 PASS
6 PASS 22 PASS 38 PASS 54 PASS
7 PASS 23 PASS 39 PASS 55 PASS
8 PASS 24 PASS 40 PASS 56 PASS
9 PASS 25 PASS 41 PASS 57 PASS

10 PASS 26 PASS 42 PASS 58 PASS
11 PASS 27 PASS 43 PASS 59 PASS
12 PASS 28 PASS 44 PASS 60 PASS
13 PASS 29 PASS 45 PASS 61 PASS
14 PASS 30 PASS 46 PASS 62 PASS
15 PASS 31 PASS 47 PASS 63 PASS

73



defined previously. T is a topology between 0 and 63, and φ is the security property

captured by φsubset. For each combination of these inputs the model verification produces

the output PASS or FAIL. The output PASS refers to the verification that finds no security

violations, and FAIL refers to one in which security violations are found.

The results of Attack i, where all nodes participating in the network are benign, is

shown in Table 4.3. The results, as expected, show that φsubset holds for all possible

topologies. Secure OLSR meets the same routing objectives as OLSR when there are no

adversaries.

When attack vector ii is tested in the framework it reveals a significant number FAIL

outputs. Under attack ii the attacker definition continuously advertises TC messages with

false routes. The only false routes it advertises are from the attack node vN−1 to nodes v0,

v1, and v2. There are some cases when vN−1 = v2. The output of PASS, in Table 4.4, is

explained by two scenarios. The first is when the attacker definition actually advertises

routes that exist, this occurs in topologies 1, 6, and 56-63. The second scenario is when

node v0 is not connected to the larger network, the attacker is ineffective because it cannot

send any control traffic to v0. In this last scenario v0 accurately believes it is an isolated

node. This scenario accounts for all remaining PASS outputs in Table 4.4.

Attack iii shows the case where the attacker chooses only to modify the TC messages

which it has been elected to forward in the network. Some topologies verified against this

attack are vulnerable while others are not, as presented in Table 4.1. Since the private keys

are compromised the attacker is able to modify TC messages that are accepted by all

benign nodes. The same analysis covered for Figure 4.1 also applies in the case of Secure

OLSR.

Applying attack vector iv reveals that 19 topologies lead to an output of FAIL, see

Table 4.5. The attack expressed here is the invisible node attack. The failures correspond

to cases where the invisible node is able to add non-existent links to the network. This

74



Table 4.4: Verification against attack ii: Byzantine

T φsubset T φsubset T φsubset T φsubset

0 PASS 16 PASS 32 PASS 48 PASS
1 PASS 17 FAIL 33 PASS 49 FAIL
2 FAIL 18 PASS 34 FAIL 50 FAIL
3 FAIL 19 FAIL 35 FAIL 51 FAIL
4 PASS 20 PASS 36 PASS 52 PASS
5 FAIL 21 FAIL 37 FAIL 53 FAIL
6 PASS 22 FAIL 38 FAIL 54 FAIL
7 FAIL 23 FAIL 39 FAIL 55 FAIL
8 FAIL 24 FAIL 40 FAIL 56 PASS
9 FAIL 25 FAIL 41 FAIL 57 PASS

10 FAIL 26 FAIL 42 FAIL 58 PASS
11 FAIL 27 FAIL 43 FAIL 59 PASS
12 FAIL 28 FAIL 44 FAIL 60 PASS
13 FAIL 29 FAIL 45 FAIL 61 PASS
14 FAIL 30 FAIL 46 FAIL 62 PASS
15 FAIL 31 FAIL 47 FAIL 63 PASS

attack is able to violate the definition of security by introducing false routes. Although,

not all cases lead to a security violation, the attack is effective under certain topological

configurations. Figure 4.2 demonstrates how some topological configurations will lead to

the output of FAIL. In general, the output FAIL occurs if the invisible node adds a link

between two nodes that are not otherwise connected.

When faced with attack v, Secure OLSR ignores all messages signed by the attacking

node because its identity is in the set of untrusted nodes (vN−1 ∈ U). The verification run

against this attack vector demonstrates the expected result that v is an ineffective attack.

Table 4.2 shows that the protocol is not vulnerable to attack vector v for the set of

topologies examined. This result was expected under this attack and demonstrates that

Secure OLSR adds security for the set of inputs examined.

75



Table 4.5: Verification against attack iv: Invisible node

T φsubset T φsubset T φsubset T φsubset

0 PASS 16 PASS 32 PASS 48 PASS
1 PASS 17 PASS 33 PASS 49 FAIL
2 PASS 18 PASS 34 PASS 50 FAIL
3 PASS 19 PASS 35 PASS 51 FAIL
4 PASS 20 PASS 36 PASS 52 PASS
5 PASS 21 PASS 37 PASS 53 PASS
6 FAIL 22 PASS 38 PASS 54 PASS
7 PASS 23 PASS 39 PASS 55 PASS
8 PASS 24 FAIL 40 FAIL 56 FAIL
9 PASS 25 PASS 41 FAIL 57 FAIL

10 PASS 26 FAIL 42 PASS 58 FAIL
11 PASS 27 PASS 43 PASS 59 FAIL
12 PASS 28 FAIL 44 FAIL 60 FAIL
13 PASS 29 PASS 45 FAIL 61 FAIL
14 PASS 30 FAIL 46 PASS 62 FAIL
15 PASS 31 PASS 47 PASS 63 PASS

v0

I

v2

v1

(a) FAIL

v0

I

v2

v1

(b) FAIL

v0

I

v2

v1

(c) PASS

v0

I

v2

v1

(d)

PASS

Figure 4.2: Collection of topologies involving an invisible node, I. FAIL implies I adds at

least one false route. PASS implies I has no effect.

76



4.4 The Subtlety of Attacks

In the analysis of the invisible node attack, vector iv, it would be insufficient to

randomly pick a few topologies to verify. For example, had topologies 31 and 37 (Figure

4.2c and 4.2d) been selected the results would show that the invisible node had no impact.

Instead, it is necessary to examine every topology to show which are vulnerable. For

attack vector iv an obvious rule can be stated: if vI is a neighbor of two or more nodes

which do not share a link, then the attacker adds a false route. The rule for the invisible

node attack is easily derived even without the verification of the Secure OLSR model. The

important result is that attacks do not apply equally in all network topologies. New attacks

may not lend themselves to such simple rules; therefore, it is essential for the verification

framework to examine all possible node configurations.

The attack vector ii causes property violations in all topologies verified. The vector

demonstrates that if just one private key is compromised, or there is no security, then any

configuration can be forced to accept inaccurate routes. A less obtrusive attack vector

(e.g., vector iii) limits the attacker, allowing it to only modify TC messages which it is

responsible for forwarding. The results of such an attack are shown in Table 4.1. In

configurations where the malicious node, vA, is selected as an MPR by at least one node

the property, φsubset, is violated. Recall that MPR selection is non-deterministic. It follows

that the attack will not work in network scenarios where vA is not elected as an MPR. An

unsuccessful example of this attack is illustrated in Figure 4.3a. Figure 4.3b provides an

example of a successful attack. These examples are different because 4.3a did not select

vA as an MPR whereas 4.3b did. The attacker must be selected as the MPR to be

successful, so the attack succeeded in this instance. Two SPIN simulations provided these

different results under the same inputs. See Appendix A.2 and A.3 for the full message

sequence charts associated with Figures 4.3a and 4.3b. This analysis underscores the need

to perform exhaustive verification when searching for security flaws in a distributed

77



system. The automatic discovery of attacks against secure, table-based protocols is

dependent on the ability to exhaustively search a protocol’s possible interactions in order

to disclose subtle sequences that lead to property violations.

v0

v1

v2 vA

(a) Network view is accurately built,

despite attack vector iii.

v0

v1

v2 vA

(b) The link v1-v0 is an inaccuracy added

by attack vector iii.

Figure 4.3: Topology #30, under attack vector iii, in two separate simulation results.

4.5 Chapter Summary

The results of the validation and verification experiments designed in Chapter 3 were

tested. These results demonstrate that the OLSR and Secure OLSR models correctly

reflect their specifications. No new attacks were revealed by applying the automatic

verification framework; however, the verification under the set of existing attacks proves

that the framework has the ability to detect subtle errors in proactive, table-based routing

protocols.

78



5 Conclusions

The prevalence of wireless communications makes it a low hanging fruit for

innovative products as well as unscrupulous hackers with malicious intent. This research

advances the state of an automated verification framework into the realm of proactive ad

hoc routing protocols. Although no method may ever be able to prevent the subversion of

routing protocols, it is very important to understand the security vulnerabilities that exist.

5.1 Research Problem

In today’s network applications, end-to-end security is often achieved through public

key encryption. At this level, however, the only guarantees that can be made are that a

user’s data is unmodified, remains private, or both. Application level security cannot

guarantee the delivery of data. Thus, at the routing protocol layer a different level of

security must be introduced to protect availability. This need is especially true in wireless

networks like MANETs.

Attacks against routing in MANETs are often subtle because of the wide range of

actions that an attacker may employ. For example, a relaying attack allows an adversary to

take control of data paths by simply causing a shorter path to be advertised through it. An

important step to preventing attacks against a wireless routing protocol is to understand

the possible attack avenues and the particular attack sequences that are available to an

attacker.

5.2 Contributions

This research provides a modeling framework capable of exhaustively verifying

security properties in MANET table-based routing protocols. The research directly

extends a similar framework developed in Andel [2].

79



Specifically, this framework adds support for table-based protocols, and in doing so

advanced several formal methods modeling concepts for MANETs. Linear temporal logic

was added, and scalability was improved with the use of the macro processor m4. The

concept of the wireless medium was improved with greater scalability, tractability, and

abstraction. Finally, the universal, table-based verification property, φsubset, was developed

and it is suggested that this property can be used in the verification of all table-based

protocols.

LTL is introduced to the framework and enables a property to be evaluated in all steps

of execution, this is the first application of LTL to secure, table-based routing protocols.

The macro processor m4 is applied to the framework and provides size scalability, greater

expressiveness, and adaptable attack vectors. The use of m4 removes verification

dependence on external tools or scripting languages and centralizes the modeling code.

The wireless medium concept is further developed to improve the abstraction,

tractability, and size scalability. Specifically the wireless medium server is designed such

that it can be used for modeling any ad hoc routing protocol. This is valuable because new

protocols will not rely on the implementation of the wireless medium model.

Verification of Secure OLSR against several attack vectors confirms the findings of

previously discovered attacks. Although the verification framework did not reveal any

undiscovered attacks against Secure OLSR, this does not mean that no other attacks

against the protocol exist. It only means that the attack vectors, topologies, and properties

tested did not reveal any unknown attack sequences.

5.3 Future Work

The framework presented here is an extension into the realm of proactive ad hoc

routing protocols. This research has exposed many more avenues of research needed for

the automatic verification of secure routing protocols.

80



Several of the advances developed are directly applicable to the prior research in

accumulation-based, reactive routing protocols. For example, the use of m4 can be used to

improve scalability and improve the readability of the Promela models. The wireless

medium changes can also be applied to greatly reduce the state-space required in

verification runs. Applying the concepts learned in this research would allow the

framework developed in Andel [2], to be applied to networks containing many more

nodes.

A clear path forward with this framework is to apply it to other secure, table-based

protocols such as SLSP and SAODV. In the case of on-demand protocols the property,

φsubset, is still applicable. It may even be desirable to force all nodes in table-based routing

protocols to send route requests. The final decision is, however, in the hands of the

designer.

Proactive, table-based protocols can now be modeled for exhaustive verification. The

next logical step is to add support for secure hybrid protocols. Hybrid protocols utilize

both reactive and proactive routing strategies in a single protocol.

Although great improvements were made in the wireless medium, its current

implementation may be improved. One improvement is to remove the limitation that

imposes finite execution sequences.

The verifications never found any undiscovered attack sequences in Secure OLSR.

This absence is not to say that an undiscovered attack does or does not exist. More

sophisticated attack vectors need to be defined. These attack vectors must assume that no

cryptographic material is compromised and will be more advanced than relay attacks. A

successful attack vector may incorporate relaying and other mechanisms to attempt to

trick the protocol into accepting false routes. If, for example, an adversary is able to trick

another node into signing a message on its behalf then several possible attacks may

81



become possible. These attack vectors can then be used to automatically discover the

associated attack sequences and their applicable topologies.

82



Appendix A: Message Sequence Charts

A.1 Description

The following message sequence charts describe the series of messages exchanged

between nodes. Section A.2 shows how the configuration of topology 30 leads to an

inaccurate routing decision as discussed in Chapter 4. Section A.3 demonstrates a

sequence of events where attack vector iii fails to affect the appropriate routing decisions

for topology 30.

83



Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 1

0 1::init:0 0:never_1
1 #682

6 1:Wireless_Medium

8 2:Node

11 to_wm!HELLO,0,0,0,0,0,0,0

13 to_wm?HELLO,0,0,0,0,0,0,0

19 from_wm_2!HELLO,0,0,0,0,0,0

21 from_wm_3!HELLO,0,0,0,0,0,0

23 3:Node

27 4:Node

31 from_wm_local?HELLO,0,0,0,0,0,0

35 to_wm!HELLO,2,2,1,0,0,0,2

37 to_wm?HELLO,2,2,1,0,0,0,2

39 from_wm_0!HELLO,2,1,0,0,0,2

41 from_wm_1!HELLO,2,1,0,0,0,2

47 from_wm_local?HELLO,2,1,0,0,0,2

51 to_wm!HELLO,1,1,4,4,0,0,1

53 from_wm_local?HELLO,2,1,0,0,0,2

56 to_wm?HELLO,1,1,4,4,0,0,1

62 from_wm_2!HELLO,1,4,4,0,0,1

65 from_wm_local?HELLO,1,4,4,0,0,1

66 + tc_selector@2: [0 0 2 0 ]


69 to_wm!HELLO,2,2,3,0,0,0,2

71 5:ByzNode

73 from_wm_local?HELLO,0,0,0,0,0,0

78 from_wm_3!HELLO,1,4,4,0,0,1

80 from_wm_local?HELLO,1,4,4,0,0,1

85 to_wm?HELLO,2,2,3,0,0,0,2

87 from_wm_0!HELLO,2,3,0,0,0,2

89 from_wm_1!HELLO,2,3,0,0,0,2

96 to_wm!HELLO,3,3,3,2,0,0,3

98 from_wm_local?HELLO,2,3,0,0,0,2

101 from_wm_local?HELLO,2,3,0,0,0,2

104 to_wm?HELLO,3,3,3,2,0,0,3

106 from_wm_0!HELLO,3,3,2,0,0,3

108 from_wm_1!HELLO,3,3,2,0,0,3

115 to_wm!TC,2,2,2,2,1,3,2

117 from_wm_local?HELLO,3,3,2,0,0,3

Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 2

5:ByzNode4:Node3:Node2:Node1:Wireless_Medium0:never_1

118 + tc_selector@1: [0 8 0 0 ]


120 from_wm_local?HELLO,3,3,2,0,0,3

123 to_wm?TC,2,2,2,2,1,3,2

125 from_wm_0!TC,2,2,2,1,3,2

127 from_wm_1!TC,2,2,2,1,3,2

134 to_wm!HELLO,1,1,12,8,0,0,1

136 from_wm_local?TC,2,2,2,1,3,2

137 + tc_selector@1: [0 8 2 0 ]


139 from_wm_local?TC,2,2,2,1,3,2

140 + tc_selector@0: [0 0 2 0 ]


142 to_wm?HELLO,1,1,12,8,0,0,1

148 from_wm_2!HELLO,1,12,8,0,0,1

150 from_wm_3!HELLO,1,12,8,0,0,1

152 from_wm_local?HELLO,1,12,8,0,0,1

155 + tc_selector@3: [0 0 0 2 ]


158 to_wm!TC,3,3,3,2,1,3,3

160 from_wm_local?HELLO,1,12,8,0,0,1

163 to_wm?TC,3,3,3,2,1,3,3

165 from_wm_0!TC,3,3,2,1,3,3

167 from_wm_1!TC,3,3,2,1,3,3

174 to_wm!HELLO,2,2,3,2,0,0,2

176 from_wm_local?TC,3,3,2,1,3,3

177 + tc_selector@1: [0 8 2 2 ]


179 from_wm_local?TC,3,3,2,1,3,3

180 + tc_selector@0: [0 0 2 2 ]


182 to_wm?HELLO,2,2,3,2,0,0,2

184 from_wm_0!HELLO,2,3,2,0,0,2

186 from_wm_1!HELLO,2,3,2,0,0,2

192 from_wm_local?HELLO,2,3,2,0,0,2

193 + tc_selector@1: [0 12 2 2 ]


196 to_wm!TC,1,1,1,12,2,3,1

198 from_wm_local?HELLO,2,3,2,0,0,2

201 to_wm?TC,1,1,1,12,2,3,1

207 from_wm_2!TC,1,1,12,2,3,1

209 from_wm_3!TC,1,1,12,2,3,1

211 from_wm_local?TC,1,1,12,2,3,1

214 + tc_selector@3: [0 12 0 2 ]


217 to_wm!TC,3,3,1,7,2,2,1

Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 3

5:ByzNode4:Node3:Node2:Node1:Wireless_Medium0:never_1

219 from_wm_local?TC,1,1,12,2,3,1

220 + tc_selector@2: [0 12 2 0 ]


222 to_wm?TC,3,3,1,7,2,2,1

224 from_wm_0!TC,3,1,7,2,2,1

226 from_wm_1!TC,3,1,7,2,2,1

233 to_wm!TC,3,3,3,2,1,3,3

235 from_wm_local?TC,3,1,7,2,2,1

238 from_wm_local?TC,3,1,7,2,2,1

239 + tc_selector@0: [0 7 2 2 ]


240 #676

241 to_wm?TC,3,3,3,2,1,3,3

243 from_wm_0!TC,3,3,2,1,3,3

245 from_wm_1!TC,3,3,2,1,3,3

250 #685

A.2 Topology 30: Inaccurate Route

84



Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 1

0 0::init:
19 1:Wireless_Medium

20 2:Node

21 3:Node

24 to_wm!HELLO,0,0,0,0,0,0,0

26 4:Node

29 to_wm?HELLO,0,0,0,0,0,0,0

35 from_wm_2!HELLO,0,0,0,0,0,0

37 from_wm_3!HELLO,0,0,0,0,0,0

38 from_wm_local?HELLO,0,0,0,0,0,0

71 5:ByzNode

74 to_wm!HELLO,2,2,1,0,0,0,2

75 to_wm?HELLO,2,2,1,0,0,0,2

77 from_wm_0!HELLO,2,1,0,0,0,2

79 from_wm_1!HELLO,2,1,0,0,0,2

84 from_wm_local?HELLO,0,0,0,0,0,0

115 from_wm_local?HELLO,2,1,0,0,0,2

119 to_wm!HELLO,3,3,1,0,0,0,3

152 to_wm?HELLO,3,3,1,0,0,0,3

158 to_wm!HELLO,1,1,4,4,0,0,1

160 from_wm_local?HELLO,2,1,0,0,0,2

194 from_wm_0!HELLO,3,1,0,0,0,3

196 from_wm_1!HELLO,3,1,0,0,0,3

201 to_wm?HELLO,1,1,4,4,0,0,1

207 from_wm_2!HELLO,1,4,4,0,0,1

209 from_wm_3!HELLO,1,4,4,0,0,1

210 from_wm_local?HELLO,3,1,0,0,0,3

212 from_wm_local?HELLO,1,4,4,0,0,1

214 from_wm_local?HELLO,3,1,0,0,0,3

216 from_wm_local?HELLO,1,4,4,0,0,1

257 + tc_selector@2: [0 0 2 0 ]


359 to_wm!HELLO,1,1,12,4,0,0,1

361 to_wm?HELLO,1,1,12,4,0,0,1

367 from_wm_2!HELLO,1,12,4,0,0,1

369 from_wm_3!HELLO,1,12,4,0,0,1

370 from_wm_local?HELLO,1,12,4,0,0,1

405 to_wm!HELLO,2,2,3,2,0,0,2

406 from_wm_local?HELLO,1,12,4,0,0,1

Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 4

5:ByzNode4:Node3:Node2:Node1:Wireless_Medium0::init:

1104 from_wm_0!TC,2,1,12,2,2,1

1106 from_wm_1!TC,2,1,12,2,2,1

1111 to_wm?TC,2,2,2,3,2,3,2

1114 from_wm_local?TC,0,0,4,1,3,0

1123 + tc_selector@2: [4 12 3 0 ]


1131 from_wm_local?TC,2,1,12,2,2,1

1140 + tc_selector@0: [4 12 2 0 ]


1159 to_wm!TC,2,2,0,4,1,2,0

1161 from_wm_0!TC,2,2,3,2,3,2

1163 from_wm_local?TC,0,0,4,1,3,0

1172 + tc_selector@3: [4 12 2 0 ]


1179 from_wm_local?TC,2,2,3,2,3,2

1181 from_wm_local?TC,2,1,12,2,2,1

1192 from_wm_1!TC,2,2,3,2,3,2

1204 + tc_selector@0: [4 12 3 0 ]


1212 from_wm_local?TC,2,2,3,2,3,2

1221 + tc_selector@1: [0 12 3 0 ]


1229 to_wm?TC,2,2,0,4,1,2,0

1231 from_wm_0!TC,2,0,4,1,2,0

1233 from_wm_1!TC,2,0,4,1,2,0

1238 from_wm_local?TC,2,0,4,1,2,0

1240 from_wm_local?TC,2,0,4,1,2,0

1253 to_wm!TC,3,3,3,0,0,3,3

1261 + tc_selector@1: [4 12 3 0 ]


1270 to_wm?TC,3,3,3,0,0,3,3

1272 from_wm_0!TC,3,3,0,0,3,3

1274 from_wm_1!TC,3,3,0,0,3,3

1281 to_wm!TC,2,2,2,3,2,3,2

1282 from_wm_local?TC,3,3,0,0,3,3

1284 to_wm?TC,2,2,2,3,2,3,2

1286 from_wm_0!TC,2,2,3,2,3,2

1297 from_wm_local?TC,2,2,3,2,3,2

1312 to_wm!TC,0,0,2,3,2,1,2

1313 from_wm_local?TC,3,3,0,0,3,3

1325 from_wm_1!TC,2,2,3,2,3,2

1330 to_wm?TC,0,0,2,3,2,1,2

1336 from_wm_2!TC,0,2,3,2,1,2

1338 from_wm_3!TC,0,2,3,2,1,2

Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 5

5:ByzNode4:Node3:Node2:Node1:Wireless_Medium0::init:

1341 to_wm!TC,0,0,1,12,2,1,1

1342 from_wm_local?TC,0,2,3,2,1,2

1344 from_wm_local?TC,2,2,3,2,3,2

1347 from_wm_local?TC,0,2,3,2,1,2

1356 + tc_selector@3: [4 12 3 0 ]


1373 to_wm?TC,0,0,1,12,2,1,1

1379 from_wm_2!TC,0,1,12,2,1,1

1381 from_wm_3!TC,0,1,12,2,1,1

1384 to_wm!TC,1,1,1,12,2,3,1

1386 from_wm_local?TC,0,1,12,2,1,1

1406 from_wm_local?TC,0,1,12,2,1,1

1418 to_wm?TC,1,1,1,12,2,3,1

1424 from_wm_2!TC,1,1,12,2,3,1

1426 from_wm_3!TC,1,1,12,2,3,1

1429 to_wm!TC,3,3,3,0,0,3,3

1430 to_wm?TC,3,3,3,0,0,3,3

1432 from_wm_0!TC,3,3,0,0,3,3

1434 from_wm_1!TC,3,3,0,0,3,3

1442 to_wm!TC,1,1,0,4,1,1,0

1443 from_wm_local?TC,1,1,12,2,3,1

1454 to_wm?TC,1,1,0,4,1,1,0

1461 from_wm_local?TC,1,1,12,2,3,1

1463 from_wm_local?TC,3,3,0,0,3,3

1476 to_wm!TC,0,0,0,4,1,3,0

1487 from_wm_local?TC,3,3,0,0,3,3

1499 from_wm_2!TC,1,0,4,1,1,0

1501 from_wm_3!TC,1,0,4,1,1,0

1502 from_wm_local?TC,1,0,4,1,1,0

1513 from_wm_local?TC,1,0,4,1,1,0

1525 to_wm?TC,0,0,0,4,1,3,0

1531 from_wm_2!TC,0,0,4,1,3,0

1533 from_wm_3!TC,0,0,4,1,3,0

1534 from_wm_local?TC,0,0,4,1,3,0

1545 from_wm_local?TC,0,0,4,1,3,0

1559 to_wm!TC,1,1,2,3,2,1,2

1561 to_wm?TC,1,1,2,3,2,1,2

1567 from_wm_2!TC,1,2,3,2,1,2

Spin Version 6.1.0 −− 4 May 2011 −− solsr.pml −− MSC −− 6

5:ByzNode4:Node3:Node2:Node1:Wireless_Medium0::init:

1569 from_wm_3!TC,1,2,3,2,1,2

1570 from_wm_local?TC,1,2,3,2,1,2

1583 to_wm!TC,2,2,1,12,2,0,1

1585 to_wm?TC,2,2,1,12,2,0,1

1587 from_wm_0!TC,2,1,12,2,0,1

1589 from_wm_1!TC,2,1,12,2,0,1

1594 from_wm_local?TC,1,2,3,2,1,2

1596 from_wm_local?TC,2,1,12,2,0,1

1609 to_wm!TC,2,2,0,4,1,0,0

1611 to_wm?TC,2,2,0,4,1,0,0

1613 from_wm_0!TC,2,0,4,1,0,0

1615 from_wm_local?TC,2,1,12,2,0,1

1636 from_wm_1!TC,2,0,4,1,0,0

1641 from_wm_local?TC,2,0,4,1,0,0

1643 from_wm_local?TC,2,0,4,1,0,0

1656 to_wm!TC,0,0,1,12,2,0,1

1668 to_wm?TC,0,0,1,12,2,0,1

1674 from_wm_2!TC,0,1,12,2,0,1

1676 from_wm_3!TC,0,1,12,2,0,1

1677 from_wm_local?TC,0,1,12,2,0,1

1690 to_wm!TC,1,1,0,4,1,0,0

1691 to_wm?TC,1,1,0,4,1,0,0

1697 from_wm_local?TC,0,1,12,2,0,1

1699 from_wm_2!TC,1,0,4,1,0,0

1701 from_wm_3!TC,1,0,4,1,0,0

1702 from_wm_local?TC,1,0,4,1,0,0

1723 from_wm_local?TC,1,0,4,1,0,0

1733 timeout


A.3 Topology 30: Accurate Route

85



Appendix B: Other Secure Routing Protocols

Three secure protocols are described in this appendix. The protocols are Secure

AODV (SAODV), Secure Efficient Distance Vector (SEAD), and Secure Link State

Routing Protocol (SLSP). These protocols were not modeled with the secure verification

framework. A logical progression would be to model SLSP next because it shares several

common features with OLSR and Secure OLSR. SEAD is similar to Secure OLSR

because it is proactive and SAODV is related because it is table-based. The

security-mechanisms employed in each protocol are significantly different.

B.1 Secure AODV (SAODV)

Secure AODV (SAODV) [23] is based closely on AODV. The protocol’s objective is

to meet import authorization, source authentication, integrity, and data authentication for

data used in the routing process. SAODV has several admitted weaknesses. The protocol

cannot account for Byzantine nodes, cannot provide non-repudiation, and cannot prevent a

malicious node from tunneling or the invisible node attack (INA) (i.e., colluding

attackers).

For the proper operation of SAODV, it is assumed that a key management system

exists, for example PKI. In addition, a node’s identity is verifiable through that node’s

public key. Finally, to simplify the analysis, it is assumed that intermediate nodes cannot

provide previously known paths to RReqs. (SAODV’s Double Signature Extension can

allow intermediate nodes to securely cache routes to RReqs.)

At a high-level SAODV meets its objectives by digitally signing all immutable fields.

All fields in each RREQ and RREP are considered immutable aside from the hop count.

For the one mutable field in AODV, hop count, one-way hash chaining can be used to

assure that the field never decreases as it is travels toward the destination in a route request.

86



Specifically when SAODV generates a RReq or a RRep the fields Hash Function,

Max Hop Count, Top Hash, and Hash are initialized. Max Hop Count is initially set to the

time-to-live, a specific Hash Function is set, the Hash is set to a random integer, and the

Top Hash is evaluated by performing the Hash Function Max Hop Count times on the

initial Hash value.

When a node receives a RReq or RRep the hash of the hop count is computed and

forwarded with all other information. SAODV requires that every node first verify the

signature of the RReq or RRep messages before being processed. If the verification is

successful then AODV processed the messages as normal plus the signing and hashing

functions as described in [23].

The modifications to AODV proposed in SAODV do not significantly change the

underlying operation of the protocol. The only new fields defined by SAODV are Hash

Function, Max Hop Count, Top Hash, and Hash. The adding of these fields would add a

constant overhead in state-vector size to the Promela models; therefore, it remains feasible

to model SAODV in Promela and perform SPIN verifications on such a model.

As a final note, the discussion of SAODV omits RErr messages. The Promela model

makes this same omission. It is reasonable in the models to assume that mobility is not a

consideration. Link breakages are the only reason for triggering a RErr message, thus all

models only consider a static topology for the network. Similar logic is used in Ács [19]

to provide a proof for the endairA protocol. 7

B.2 Secure Efficient Distance Vector (SEAD)

Secure Efficient Distance Vector (SEAD) [21] is based on DSDV, a proactive

protocol which uses a destination-sequence number to prevent routing loops. SEAD is not

considered to be secure against more than two malicious attackers that collude. The

7 The assumption does not imply there are no issues with mobility. Quite the opposite, if it can be shown
that the protocol is insecure without mobility then the protocol remains insecure even after adding mobility
to the model.

87



primary goal of SEAD is to protect the destination-sequence number and minimum route

length thus protecting the loop freedom property of the protocol.

Let m represent the shortest possible route length and s represent the current

sequence number. SEAD using hash trees assures that an attacker can advertise at best a

shortest path of m + 1. To achieve this goal SEAD utilizes one-way hash chains and

Merkle hash trees. One-way hash chains guarantee that the lower bound of path length, m,

cannot be lessened by Byzantine node. This guarantee, however, allows an adversary to

advertise another route with distance m, Merkle hash trees can be used to further ensure an

adversary cannot advertise a path less than m + 1.

The one way hash-chain is calculated by the recurrence relation hi = H(hi−1) where

h0 = x and x is a random integer and i is the current node. The hash function ensures that

nodes down stream of i cannot modify the chain without completely corrupting it. A

corrupt hash chain can easily be identified and the associated packets discarded.

Merkle hash trees are calculated recursively from a parent root, mp, according to

mp = H[ml||mr]. The expression, mp = H[ml||mr], reads the parent value mp is equal to the

one-way hash of the concatenation of ml and mr. Given this construct it is possible for

every pair of nodes to calculate a hash based solely on information provided by the

previous node. This property ensures that an adversary cannot simply rebroadcast the last

hash value in the chain and pass it off as being valid because the recipient can verify that

the adversarial node is not who he claims to be.

DSDV is not examined from a modeling perspective; however, SEAD does not add

much additional burden to the protocol. For implementing Merkle trees additional hashing

information must be passed which is, in the worst case, linear to the networks diameter.

Thus if modeling DSDV is feasible using formal methods then so to is modeling SEAD.

88



Table B.1: link-state update (LSU) fields.

Field Purpose
RLS U Track current hops this update has traversed
Zone Radius XR component of Hash chain
Sequence Uniquely identify the LSU paired with origin address
Signature Public key of the LSU’s origin
Hops Traversed X1 component of Hash chain

B.3 Secure Link State Routing Protocol (SLSP)

Papadimitratos [24] proposes the Secure Link State Routing Protocol (SLSP). The

protocol can be adapted to meet the security challenges of hybrid routing protocols

incorporating both reactive and proactive sub-protocols.

SLSP’s security considerations are limited to individual Byzantine attackers. The

protocol designers do not claim that the protocol can be considered secure when

challenged by two or more malicious nodes that collude. The protocol is considered to

prevent advertisement of non-existent or fabricated link-states, prevent spoofing of peers,

thwart Denial of Service (DoS) flooding attacks, and strengthen the over all neighbor

discovery process.

The basic components of SLSP are link-state updates (LSUs) (equivalent to TC

messages), neighbor look-up protocol (NLP) notifications, the hash chaining function H(),

and key certification. Key certification is assumed to be provided by threshold

cryptography, local repositories, or a distributed certificate authority (CA). H() is defined

as Xi = Hi(X), i = 1, ...,R, where R is the network diameter and H0(X) = X. An LSU

consists of the fields in Table B.1. SLSP modifies each LSU field as the LSU propagates

through the network.

In SLSP nodes are bound to a single, unique identifying address and public key.

Neighboring nodes can be unambiguously identified based on their public key, i.e.,

mapped to their unique address.

89



SLSP operates in the following fashion. SLSP performs neighbor discovery by

exchanging signed HELLO messages between on-hop nodes. Only validated HELLO

messages are accepted. The NLP then runs and specifically maintains a mapping of

one-hop neighbors, identifies discrepancies, and measures the control packet rates. NLP

will generate a notification if a neighbor uses an address different from the one recorded in

the neighbor set or two neighbors use the address. Any packets from a source that

triggered a notification are discarded. Nodes receiving an LSU validate the update,

suppress duplicate updates, and relay previously un-relayed LSUs. A validated LSU

update is only committed if the both nodes advertise the same state of the link (i.e., the

link is bi-directional).

SLSP provides a packet format for public key distribution. However, LSUs are also

able to perform key distribution; therefore, discussion of the public key distribution packet

is unnecessary.

Notably SLSP differs from OLSR in several respects. SLSP provides no concept of

MPRs and in fact uses this as a security feature. By implementing pure flooding SLSP

ensures that a non-adversarial route, if once exists, will be found. In the same vein SLSP

has no requirement to discovery two-hop neighbors, thus making SLSP considerably

simpler to model than OLSR.

90



Appendix C: Acronyms

ANSN advertised neighbor sequence number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

AODV Ad hoc On-demand Distance Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ARAN Authenticated Routing for Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

AVANTSSAR Automated Validation of Trust and Security of Service-oriented

Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

AVISPA Automated Validation of Internet Security Protocols and Applications . . . . . . . 27

CA certificate authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

CIA confidentiality, integrity, and availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CL-AtSe Constraint Logic-Attack Searcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CPAL-ES Cryptographic Protocol Analysis Language - Evaluation System . . . . . . . . . . 27

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance . . . . . . . . . . . . . . . . . . . . . 39

DSDV Destination Sequence Distance Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

DSR Dynamic source routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

DYMO Dynamic MANET On-demand Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DoS Denial of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

GloMoSim Global Mobile Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IEEE Institute of Electrical and Electronics Engineers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IETF Internet Engineering Task Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

INA invisible node attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

LSU link-state update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

LTL Linear temporal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

91



LUNAR Lightweight Underlay Network for Ad hoc Routing . . . . . . . . . . . . . . . . . . . . . . . 12

MANET mobile ad hoc network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

MPR multi-point relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

NLP neighbor look-up protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

NS2 Network Simulator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

OFMC On-the-Fly Model Cheker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

OLSR Optimized Link-State Routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

OSI model Open Systems Interconnection model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

PKI Public Key Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Promela Process Metalanguage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

RREP route reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

RREQ route request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

SAODV Secure AODV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SATMC SAT-based Model-Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SEAD Secure Efficient Distance Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SLSP Secure Link State Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SMF Simplified Multicast Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SPIN Simple Promela Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

SRP Secure Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

TC topology control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

TTL time to live . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

VANET vehicular ad hoc network

92



WG Working Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

WMN wireless mesh network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

WSN wireless sensor network

93



Bibliography

[1] D.M. Ritchie and B.W. Kernighan. The C programming language. Bell
Laboratories, 1988.

[2] Todd R. Andel. Formal Security Evaluation of Ad Hoc Routing Protocols. PhD
thesis, Florida State University, 2007.

[3] Norman Abramson. The ALOHA system–another alternative for computer
communications. In Fall Joint Computer Conference, 1970.

[4] G. Ludwig and R. Roy. Saturation routing network limits. Proceedings of the IEEE,
65(9):1353 – 1362, sept. 1977.

[5] Eli M. Gafni and Dimitri P. Bertsekas. Distributed Algorithms for Generating
Loop-Free Routes in Networks with Frequently Changing Topology. In IEEE
Transactions on Communications, volume 29 of IEEE Transactions on
Communications, pages 11–18. IEEE, January 1981.

[6] SECAN LAB. Ad Hoc Routing Protocols (History), 2011.

[7] P. Gupta and P.R. Kumar. The capacity of wireless networks. Information Theory,
IEEE Transactions on, 46(2):388 –404, March 2000.

[8] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc
wireless networks. In Security Protocols, pages 172–182. Springer, 2000.

[9] Chris Karlof and David Wagner. Secure routing in wireless sensor networks: attacks
and countermeasures. Elsevier: Ad Hoc Networks, 1:293–315, 2003.

[10] Todd R. Andel and Alec Yasinsac. Surveying security analysis techniques in
MANET routing protocols. IEEE Communications Surveys and Tutorials, 9:70–84,
2007.

[11] Zygmunt J. Haas, Marc R. Pearlman, and Prince Samar. The Zone Routing Protocol
(ZRP) for Ad Hoc Networks. Internet-draft, IETF MANET Working Group, July
2002. Expiration: January, 2003.

[12] D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc wireless networks.
Mobile computing, pages 153–181, 1996.

[13] I. Chakeres and C. Perkins. Dynamic manet on-demand (dymo) routing.
draft-ietf-manet-dymo-19. txt (work in progress), 2010.

[14] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561 (Experimental), July 2003.

94



[15] O. Wibling, J.Parrow, and A. Pears. Automatized verification of ad-hoc routing
protocols, in: Formal Techniques for Networked and Distributed Systems. FORTE
2004, 3235:343–358, 2004.

[16] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC
3626, IETF, October 2003.

[17] Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-Sequenced
Distance-Vector routing (DSDV) for mobile computers. In Proceedings of the
conference on Communications architectures, protocols and applications,
SIGCOMM ’94, pages 234–244, New York, NY, USA, 1994. ACM.

[18] Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint relaying for flooding
broadcast messages in mobile wireless networks. In Proceedings of the 35th Hawaii
International Conference on System Sciences - 2002, page 298, 2002.

[19] Gergely Acs, Levente Buttyan, and Istvan Vajda. Provably Secure On-Demand
Source Routing in Mobile Ad Hoc Networks. IEEE Transactions on Mobile
Computing, 5:1533–1546, November 2006.

[20] Y.C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing
protocol for ad hoc networks. Wireless Networks, 11(1):21–38, 2005.

[21] Yih-Chun Hu, David B. Johnson, and Adrian Perrig. SEAD: secure efficient
distance vector routing for mobile wireless ad hoc networks. Ad Hoc Networks,
1(1):175 – 192, 2003.

[22] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, and E.M. Belding-Royer. A secure
routing protocol for ad hoc networks. In Network Protocols, 2002. Proceedings. 10th
IEEE International Conference on, pages 78 – 87, November 2002.

[23] M.G. Zapata and N. Asokan. Securing ad hoc routing protocols. In Proceedings of
the 1st ACM workshop on Wireless security, pages 1–10. ACM, 2002.

[24] P. Papadimitratos and Z. J. Haas. Secure link state routing for mobile ad hoc
networks. IEEE Workshop on Security and Assurance in Ad hoc Networks and 2003
International Symposium on Applications and the Internet, Orlando, FL, January 28,
2003, 2003.

[25] C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, and D. Raffo. Securing
the OLSR protocol. In Proceedings of Med-Hoc-Net, pages 25–27. Citeseer, 2003.

[26] Davide Benetti, Massimo Merro, and Luca Vigano. Model Checking Ad Hoc
Network Routing Protocols: ARAN vs. endairA. Technical report, Dipartmento di
Informatica, Universita degli Studi di Verona, Italy, 2010.

[27] A. Singh, CR Ramakrishnan, and S.A. Smolka. A process calculus for mobile ad
hoc networks. Science of Computer Programming, 75(6):440–469, 2010.

95



[28] L. Buttyán and Ta Vinh Thong. Formal verification of secure ad-hoc network
routing protocols using deductive model-checking. In Wireless and Mobile
Networking Conference (WMNC), 2010 Third Joint IFIP, pages 1 –6, oct. 2010.

[29] D. Dolev and A. Yao. On the security of public key protocols. Information Theory,
IEEE Transactions on, 29(2):198 – 208, March 1983.

[30] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1936.

[31] Gerard J. Holzmann. The SPIN Model Checker. Addison Wesley, 2004.

[32] Mihai-Lica Pura, Victor-Valeriu Patriciu, and Ion Bica. Formal verification of
secure ad hoc routing protocols using AVISPA: ARAN case study. Proceedings of
the 4th European Computing Conference, 4:200–206, 2010.

[33] Theo C. Ruys. Towards Effective Model Checking. PhD thesis, Twente University,
2001.

[34] T.R. Andel, G. Back, and A. Yasinsac. Automating the security analysis process of
secure ad hoc routing protocols. Simulation Modelling Practice and Theory,
19(9):2032–2049, 2011.

[35] Todd R. Andel and Alec Yasinsac. The Invisible Node Attack Revisited. IEEE
Computer, 2007:686–691, 2007.

[36] C. Adjih, T. Clausen, A. Laouiti, P. Muhlethaler, and D. Raffo. Securing the OLSR
routing protocol with or without compromised nodes in the network. INRIA
RR-5747, Nov, 2005.

96



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2012 Master’s Thesis Aug 2010 — Mar 2012

Security Verification of Secure
MANET Routing Protocols F1ATA01103J001

12G292V

Steele, Matthew F., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/12-03

AFOSR/RSL
Dr. Robert L. Herklotz
875 N. Randolph Street, Suite 325, Room 3112
Arlington, VA 22203-1768
(703) 696-6565; robert.herklotz@afosr.af.mil

Information Operations and Security
AFOSR (AFOSR/RSL)

Distribution A. Approved for Public Release; Distribution Unlimited

This material is declared a work of the United States Government and is not subject to copyright protection in the United States.

Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly against their security properties. Previous
research focuses on verifying secure, reactive, accumulation-based routing protocols. An improved methodology and framework for
secure MANET routing protocol verification is proposed which includes table-based and proactive protocols. The model checker,
SPIN, is selected as the core of the secure MANET verification framework. Security is defined by both accuracy and availability: a
protocol forms accurate routes and these routes are always accurate. The framework enables exhaustive verification of
protocols and results in a counter-example if the protocol is deemed insecure. The framework is applied to models of the Optimized
Link-State Routing (OLSR) and Secure OLSR protocol against five attack vectors. These vectors are based on known attacks against
each protocol. Vulnerabilities consistent with published findings are automatically revealed. No unknown attacks were found;
however, future attack vectors may lead to new attacks. The new framework for verifying secure MANET protocols extends
verification capabilities to table-based and proactive protocols.

formal methods, Secure OLSR, verification, security, mobile ad hoc network

U U U UU 108

Maj Todd R. Andel

(937) 255–3636, ext 4901; todd.andel afit.edu


	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	MANETs and Security
	Formal Verification
	Research Problem
	The Formal Verification Framework
	Outline

	Background and Literature Review
	Mobile Ad Hoc Networking
	MANET Security
	Formal Verification
	Chapter Summary

	Methodology
	Goals
	Assumptions
	Framework
	Attack Vectors
	OLSR Model
	Secure OLSR Model
	Chapter Summary

	Results
	OLSR Validation and Verification
	Secure OLSR Validation
	Secure OLSR Verification
	The Subtlety of Attacks
	Chapter Summary

	Conclusions
	Research Problem
	Contributions
	Future Work

	Appendix A: Message Sequence Charts
	Description
	Topology 30: Inaccurate Route
	Topology 30: Accurate Route

	Appendix B: Other Secure Routing Protocols
	Secure AODV (SAODV)
	Secure Efficient Distance Vector (SEAD)
	Secure Link State Routing Protocol (SLSP)

	Appendix C: Acronyms
	Bibliography



